Skip to main content

\(\mathsf {CoreFun}\): A Typed Functional Reversible Core Language

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 11106)

Abstract

This paper presents \(\mathsf {CoreFun}\), a typed reversible functional language, which seeks to reduce typed reversible functional programming to its essentials. We present a complete formal definition of the language, including its formal semantics and type system, the latter of which is based on a combined reasoning logical system of unrestricted and relevantly typed terms, and allows special support for ancillary (read-only) variables through its unrestricted fragment. We show how, in many cases, the type system provides the possibility to statically check for the reversibility of programs. Finally, we detail how higher-level language features such as variants and type classes may be incorporated into \(\mathsf {CoreFun}\) as syntactic sugar, such that \(\mathsf {CoreFun}\) may be used as a core language for a reversible functional language in a more modern style.

Keywords

  • Reversible computation
  • Functional programming
  • Programming languages
  • Types
  • Formal semantics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-99498-7_21
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-99498-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. 1.

    A rank-1 polymorphic system may not instantiate type variables with polymorphic types.

References

  1. Anderson, A.R., Belnap, N.D.: Entailment: The Logic of Relevance and Necessity, vol. 1. Princeton University Press, Princeton (1975)

    MATH  Google Scholar 

  2. Axelsen, H.B., Glück, R.: On reversible turing machines and their function universality. Acta Informatica 53(5), 509–543 (2016)

    MathSciNet  CrossRef  Google Scholar 

  3. Dunn, J.M., Restall, G.: Relevance logic. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 6, pp. 1–192. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-017-0460-1_1

  4. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987)

    MathSciNet  CrossRef  Google Scholar 

  5. Glück, R., Kaarsgaard, R.: A categorical foundation for structured reversible flowchart languages. In: Silva, A. (ed.) Mathematical Foundations of Programming Semantics (MFPS XXXIII). Electronic Notes in Theoretical Computer Science, vol. 336, pp. 155–171. Elsevier (2018)

    Google Scholar 

  6. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scalable quantum programming language. In: Conference on Programming Language Design and Implementation, PLDI, PLDI 2013, pp. 333–342. ACM (2013)

    Google Scholar 

  7. Huffman, D.A.: Canonical forms for information-lossless finite-state logical machines. IRE Trans. Inf. Theory 5(5), 41–59 (1959)

    CrossRef  Google Scholar 

  8. James, R.P., Sabry, A.: Theseus: a high level language for reversible computing (2014), work in progress paper at RC 2014. www.cs.indiana.edu/~sabry/papers/theseus.pdf

  9. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    MathSciNet  CrossRef  Google Scholar 

  10. Lecerf, Y.: Machines de Turing réversibles. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 257, 2597–2600 (1963)

    MathSciNet  Google Scholar 

  11. Lutz, C., Derby, H.: Janus: a time-reversible language. A letter to R. Landauer (1986). http://tetsuo.jp/ref/janus.pdf

  12. Pierce, B.C.: Types and Programming Languages, 1st edn. The MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  13. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  14. Polakow, J.: Ordered Linear Logic and Applications. Ph.D. thesis. Carnegie Mellon University (2001)

    Google Scholar 

  15. Sabry, A., Valiron, B., Vizzotto, J.K.: From Symmetric pattern-matching to quantum control. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 348–364. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2_19

    CrossRef  Google Scholar 

  16. Schordan, M., Jefferson, D., Barnes, P., Oppelstrup, T., Quinlan, D.: Reverse code generation for parallel discrete event simulation. In: Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138, pp. 95–110. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20860-2_6

    CrossRef  Google Scholar 

  17. Schultz, U.P., Laursen, J.S., Ellekilde, L.-P., Axelsen, H.B.: Towards a domain-specific language for reversible assembly sequences. In: Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20860-2_7

    CrossRef  MATH  Google Scholar 

  18. Thomsen, M.K.: A functional language for describing reversible logic. In: Specification & Design Languages, FDL 2012, pp. 135–142. IEEE (2012)

    Google Scholar 

  19. Thomsen, M.K., Axelsen, H.B.: Interpretation and programming of the reversible functional language. In: Symposium on the Implementation and Application of Functional Programming Languages, IFL 2015, pp. 8:1–8:13. ACM (2016)

    Google Scholar 

  20. Wadler, P.: Linear types can change the world! In: IFIP TC 2 Working Conference on Programming Concepts and Methods, pp. 347–359. North Holland (1990)

    Google Scholar 

  21. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29517-1_2

    CrossRef  MATH  Google Scholar 

  22. Yokoyama, T., Axelsen, H.B., Glück, R.: Fundamentals of reversible flowchart languages. Theor. Comput. Sci. (2015) (in Press), https://doi.org/10.1016/j.tcs.2015.07.046

  23. Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-interpreter. In: Partial Evaluation and Program Manipulation, PEPM 2007, pp. 144–153. ACM (2007)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the European COST Action IC 1405: Reversible Computation—Extending Horizons of Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kirkedal Thomsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Jacobsen, P.A.H., Kaarsgaard, R., Thomsen, M.K. (2018). \(\mathsf {CoreFun}\): A Typed Functional Reversible Core Language. In: Kari, J., Ulidowski, I. (eds) Reversible Computation. RC 2018. Lecture Notes in Computer Science(), vol 11106. Springer, Cham. https://doi.org/10.1007/978-3-319-99498-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99498-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99497-0

  • Online ISBN: 978-3-319-99498-7

  • eBook Packages: Computer ScienceComputer Science (R0)