Skip to main content

Learning Dialogue History for Spoken Language Understanding

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11108))

Abstract

In task-oriented dialogue systems, spoken language understanding (SLU) aims to convert users’ queries expressed by natural language to structured representations. SLU usually consists of two parts, namely intent identification and slot filling. Although many methods have been proposed for SLU, these methods generally process each utterance individually, which loses context information in dialogues. In this paper, we propose a hierarchical LSTM based model for SLU. The dialogue history is memorized by a turn-level LSTM and it is used to assist the prediction of intent and slot tags. Consequently, the understanding of the current turn is dependent on the preceding turns. We conduct experiments on the NLPCC 2018 Shared Task 4 dataset. The results demonstrate that the dialogue history is effective for SLU and our model outperforms all baselines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://tcci.ccf.org.cn/conference/2018/taskdata.php.

  2. 2.

    http://tcci.ccf.org.cn/conference/2018/dldoc/taskgline04.pdf.

  3. 3.

    https://github.com/fxsjy/jieba.

  4. 4.

    https://nlp.stanford.edu/projects/glove/.

References

  1. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  2. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug), 2493–2537 (2011)

    Google Scholar 

  3. Deoras, A., Sarikaya, R.: Deep belief network based semantic taggers for spoken language understanding. In: INTERSPEECH, pp. 2713–2717 (2013)

    Google Scholar 

  4. Guo, D., Tur, G., Yih, W.t., Zweig, G.: Joint semantic utterance classification and slot filling with recursive neural networks. In: SLT, pp. 554–559. IEEE (2014)

    Google Scholar 

  5. Haffner, P., Tur, G., Wright, J.H.: Optimizing SVMs for complex call classification. In: ICASSP, vol. 1, pp. 632–635. IEEE (2003)

    Google Scholar 

  6. Hakkani-Tür, D., Tur, G., Chotimongkol, A.: Using syntactic and semantic graphs for call classification. In: Proceedings of the ACL Workshop on Feature Engineering for Machine Learning in Natural Language Processing (2005)

    Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Jeong, M., Lee, G.G.: Triangular-chain conditional random fields. IEEE Trans. Audio Speech Lang. Process. 16(7), 1287–1302 (2008)

    Article  Google Scholar 

  9. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. In: NAACL-HLT, pp. 260–270 (2016)

    Google Scholar 

  10. Liu, B., Lane, I.: Joint online spoken language understanding and language modeling with recurrent neural networks. In: SIGDIAL, p. 22 (2016)

    Google Scholar 

  11. Mairesse, F., et al.: Spoken language understanding from unaligned data using discriminative classification models. In: ICASSP, pp. 4749–4752. IEEE (2009)

    Google Scholar 

  12. McCallum, A., Freitag, D., Pereira, F.C.: Maximum entropy Markov models for information extraction and segmentation. In: lCML, vol. 17, pp. 591–598 (2000)

    Google Scholar 

  13. Mensil, G., et al.: Using recurrent neural networks for slot filling in spoken language understanding. IEEE/ACM Trans. Audio Speech Lang. Process. 23(3), 530–539 (2015)

    Article  Google Scholar 

  14. Mesnil, G., He, X., Deng, L., Bengio, Y.: Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding. In: INTERSPEECH, pp. 3771–3775 (2013)

    Google Scholar 

  15. Moschitti, A., Riccardi, G., Raymond, C.: Spoken language understanding with Kernels for syntactic/semantic structures. In: ASRU, pp. 183–188. IEEE (2007)

    Google Scholar 

  16. Price, P.J.: Evaluation of spoken language systems: the ATIS domain. In: Speech and Natural Language (1990)

    Google Scholar 

  17. Raymond, C., Riccardi, G.: Generative and discriminative algorithms for spoken language understanding. In: Eighth Annual Conference of the International Speech Communication Association (2007)

    Google Scholar 

  18. Sarikaya, R., Hinton, G.E., Ramabhadran, B.: Deep belief nets for natural language call-routing. In: ICASSP, pp. 5680–5683. IEEE (2011)

    Google Scholar 

  19. Serban, I.V., Sordoni, A., Bengio, Y., Courville, A.C., Pineau, J.: Building end-to-end dialogue systems using generative hierarchical neural network models. AAAI 16, 3776–3784 (2016)

    Google Scholar 

  20. Serban, I.V., et al.: A hierarchical latent variable encoder-decoder model for generating dialogues. In: AAAI, pp. 3295–3301 (2017)

    Google Scholar 

  21. Tur, G., Deng, L., Hakkani-Tür, D., He, X.: Towards deeper understanding: deep convex networks for semantic utterance classification. In: ICASSP, pp. 5045–5048. IEEE (2012)

    Google Scholar 

  22. Tur, G., Hakkani-Tür, D., Heck, L., Parthasarathy, S.: Sentence simplification for spoken language understanding. In: ICASSP, pp. 5628–5631. IEEE (2011)

    Google Scholar 

  23. Ward, W., Issar, S.: Recent improvements in the CMU spoken language understanding system. In: Proceedings of the Workshop on Human Language Technology, pp. 213–216 (1994)

    Google Scholar 

  24. Xu, P., Sarikaya, R.: Convolutional neural network based triangular CRF for joint intent detection and slot filling. In: ASRU, pp. 78–83. IEEE (2013)

    Google Scholar 

  25. Yao, K., Peng, B., Zweig, G., Yu, D., Li, X., Gao, F.: Recurrent conditional random field for language understanding. In: ICASSP, pp. 4077–4081. IEEE (2014)

    Google Scholar 

  26. Zhang, X., Wang, H.: A joint model of intent determination and slot filling for spoken language understanding. In: IJCAI, pp. 2993–2999 (2016)

    Google Scholar 

Download references

Acknowledgments

Our work is supported by National Natural Science Foundation of China (No. 61433015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houfeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Ma, D., Wang, H. (2018). Learning Dialogue History for Spoken Language Understanding. In: Zhang, M., Ng, V., Zhao, D., Li, S., Zan, H. (eds) Natural Language Processing and Chinese Computing. NLPCC 2018. Lecture Notes in Computer Science(), vol 11108. Springer, Cham. https://doi.org/10.1007/978-3-319-99495-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99495-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99494-9

  • Online ISBN: 978-3-319-99495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics