Skip to main content

Junction Traffic Prediction, Using Adjacent Junction Traffic Data, Based on Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 844))

Abstract

The paper discusses the problem of substitution of traffic data, used for prediction of traffic flows at a junction, with data from an adjacent junction. Such a case arises when the measuring resources at the junction malfunction. Neural networks based approach is used for forecasting traffic flows. Solutions incorporating a multilayer perceptron (MLP) network, a cascade forward network (CFN) and a deep learning network (DLN) with autoencoders are used for evaluating the prediction performance. The elaborated designs are validated using a data set of traffic flow measurements comprising over 15 thousand measurements collected in a period of over six months. Results prove that substituting data from an adjacent junction is justified for predicting traffic flows in case of malfunctioning measuring resources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pamuła, T.: Classification and prediction of traffic flow based on real data using neural networks. Arch. Transp. 24, 519–529 (2012)

    Article  Google Scholar 

  2. Bernaś, M., Płaczek, B., Porwik, P., Pamuła, T.: Segmentation of vehicle detector data for improved k-nearest neighbours-based traffic flow prediction. IET Intell. Transp. Syst. 9, 1–11 (2015)

    Article  Google Scholar 

  3. Pamuła, T.: Traffic flow analysis based on the real data using neural networks. In: Mikulski, J. (ed.) Telematics in the Transport Environment. Communications in Computer and Information Science, vol. 329, pp. 364–371. Springer, New York (2012)

    Google Scholar 

  4. Xiaoying, L.: Prediction of traffic flow base on neural network. In: Intelligent Computation Technology and Automation, ICICTA 2009, pp. 374–377 (2009)

    Google Scholar 

  5. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp. Res. C 13, 211–234 (2005)

    Article  Google Scholar 

  6. Zhu, J.Z., Cao, J.X., Zhu, Y.: Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections. Transp. Res. C 47, 139–154 (2014)

    Article  Google Scholar 

  7. Karlaftis, M.G., Vlahogianni, E.J.: Statistical methods versus neural networks in transportation research: differences, similiarities and some insights. Transp. Res. C 19, 387–399 (2011)

    Article  Google Scholar 

  8. Król, A.: The application of the artificial intelligence methods for planning of the development of the transportation network. In: Rafalski, L., Zofka, A. (eds.) 6th Transport Research Arena, TRA 2016. Transp. Res. Procedia 14, 4532–4541. Elsevier (2016). ISSN 2352-1465

    Google Scholar 

  9. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Short-term traffic forecasting: where we are and where we’re going. Transp. Res. C 43, 3–19 (2014)

    Article  Google Scholar 

  10. Centiner, B.G., Sari, M., Borat, O.: A neural network based traffic-flow prediction model. Math. Comput. Appl. 15, 269–278 (2010)

    Google Scholar 

  11. Kumar, K., Parida, M., Katiyar, V.K.: Short term traffic flow prediction for a non urban highway using artificial neural network. Procedia Soc. Behav. Sci. 104, 755–764 (2013)

    Article  Google Scholar 

  12. Lorenzo, M., Matteo, M.: OD matrices network estimation from link counts by neural networks. J. Transp. Syst. Eng. Inf. Technol. 13(4), 84–92 (2013)

    Google Scholar 

  13. Park, J., Murphey, Y.L., McGee, R., Kristinsson, J.G., Kuang, M.L., Phillips, A.M.: Intelligent trip modeling for the prediction of an origin-destination traveling speed profile. IEEE Trans. Intell. Transp. Syst. 15(3), 1039–1053 (2014)

    Article  Google Scholar 

  14. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)

    Google Scholar 

  15. Yang, H.F., Dillon, T.S., Chen, Y.P.P.: Optimized structure of the traffic flow forecasting model with a deep learning approach. IEEE Trans. Neural Netw. Learn. Syst. (2016). https://doi.org/10.1109/TNNLS.2016.2574840

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank ZIR-SSR Bytom for providing video detector data from the Traffic Control Centre Gliwice site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Pamuła .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pamuła, T., Pamuła, W. (2019). Junction Traffic Prediction, Using Adjacent Junction Traffic Data, Based on Neural Networks. In: Sierpiński, G. (eds) Integration as Solution for Advanced Smart Urban Transport Systems. TSTP 2018. Advances in Intelligent Systems and Computing, vol 844. Springer, Cham. https://doi.org/10.1007/978-3-319-99477-2_5

Download citation

Publish with us

Policies and ethics