Advertisement

Multiple Criteria Optimization for Supply Chains – Analysis of Case Study

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 844)

Abstract

Completing of a production process in any enterprise requires designing of a proper supply chain. Its non-compliance with the ever-changing client needs may result in a variety of problems that are perceived in different ways by different stakeholders when attempting to resolve a decision problem. The paper presents an example solution of a problem related to planning of supplies of components of a final product. The proposed non-linear, deterministic mathematical model of a decision problem includes a set of 5 criteria: costs of warehousing, transport, stock in transit and the criterion of time of transport and warehouse efficiency. Such an approach allowed including various aspects of the enterprise operation and the operation of its individual departments such as supplies department, warehouse department, marketing/sales department and management.

Keywords

Multiple criteria optimization Mathematical modelling Supply chains 

References

  1. 1.
    Daganzo, C.F.: A Theory of Supply Chains. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Kumar, G., Benerjee, R.N., Meena, P.L., Ganguly, K.K.: Joint planning and problem solving roles in supply chain collaboration. IIMB Manag. Rev. 29, 45–57 (2017)CrossRefGoogle Scholar
  3. 3.
    Lambert, D., Cooper, M.: Issues in supply chain management. Ind. Mark. Manag. 29, 65–83 (2000)CrossRefGoogle Scholar
  4. 4.
    Christopher, M.: Logistics and Supply Chain Management. Creating Value-Adding Networks. Prentice Hall, Upper Saddle River (2005)Google Scholar
  5. 5.
    Monczka, R.M., Handfield, R.B., Giunipero, L.: Purchasing and Supply Chain Management. Cengage Learning, Boston (2008)Google Scholar
  6. 6.
    Power, D.: Supply chain management integration and implementation: a literature review. Supply Chain Manag. Int. J. 10(4), 252–263 (2005)CrossRefGoogle Scholar
  7. 7.
    Sawik, T.: Supply Chain Disruption Management Using Stochastic Mixed Integer Programming. International Series in Operations Research & Management Science, vol. 256. Springer, New York (2018)Google Scholar
  8. 8.
    Jacyna-Gołda, I., Merkisz-Guranowska, A., Żak, J.: Some aspects of risk assessment in the logistics chain. J. KONES Powertrain Transp. 21(4), 193–201 (2014)CrossRefGoogle Scholar
  9. 9.
    Barbosa-Póvoa, A.P.: Optimising sustainable supply chains: a summarised view of current and future perspectives. In: Barbosa-Póvoa, A.P., Corominas, A., Miranda, J.L. (eds.) Optimization and Decision Support Systems for Supply Chains, pp. 1–11. Springer, New York (2017)CrossRefGoogle Scholar
  10. 10.
    Bassett, M., Gardner, L.: Optimizing the design of global supply chain at Dow AgroSciences. Comput. Chem. Eng. 34, 254–265 (2010)CrossRefGoogle Scholar
  11. 11.
    Chen, Y.T., Che, Z.H., Chiang, T.-A., Chiang, C.J., Che, Z.-G.: Modelling and solving the collaborative supply chain planning problems. In: Chou, S., Trappey, A., Pokojski, J., Smith, S. (eds.) Global Perspective for Competitive Enterprise. Economy and Ecology Proceedings of the 16th ISPE International Conference on Concurrent Engineering, pp. 565–572. Springer, London (2007)Google Scholar
  12. 12.
    Chern, C., Hsieh, J.S.: A heuristic algorithm of master planning that satisfies multiple objectives. Comput. Oper. Res. 34, 3491–3513 (2007)CrossRefGoogle Scholar
  13. 13.
    ElMaraghy, H.A., Majety, R.: Integrated supply chain design using multi-criteria optimization. Int. J. Adv. Manuf. Technol. 37(3), 371–399 (2007)Google Scholar
  14. 14.
    Grajek, M., Kiciński, M., Bieńczak, M., Zmuda-Trzebiatowski, P.: MCDM approach to the excise goods daily delivery scheduling problem. Case study: alcohol products delivery scheduling under intra-community trade regulations. Procedia Soc. Behav. Sci. 111, 751–760 (2014)CrossRefGoogle Scholar
  15. 15.
    Grajek, M., Zmuda-Trzebiatowski, P.: A heuristic approach to the daily delivery scheduling problem. Case study: alcohol products delivery scheduling within intra-community trade legislation. LogForum 10(2), 163–173 (2014)Google Scholar
  16. 16.
    Gupta, S., Vanajakumari, M., Sriskandarajah, C.: Sequencing deliveries to minimize inventory holding cost with dominant upstream supply chain partner. J. Syst. Sci. Syst. Eng. 18(2), 159–183 (2009)CrossRefGoogle Scholar
  17. 17.
    Ruiz-Torres, A.J., Mahmoodi, F., Zeng, A.Z.: Supplier selection model with contingency planning for supplier failures. Comput. Ind. Eng. 66, 374–382 (2013)CrossRefGoogle Scholar
  18. 18.
    Woźniak, W., Gilewski, M.: Usprawnienie łańcucha dostaw poprzez reorganizację procesu zarzadzania zapasami na przykładzie wybranego przedsiębiorstwa. In: Patalas-Maliszewska, J., Jakubowski, J., Kłos, S. (eds.) Inżynieria produkcji: planowanie, modelowanie, symulacja, pp. 157–163. Instytut Informatyki i Zarządzania Produkcją Uniwersytetu Zielonogórskiego, Zielona Góra (2015)Google Scholar
  19. 19.
    Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.): Multiobjective optimization: interactive and evolutionary approaches. In: State-of-the-Art Survey Series of the Lecture Notes in Computer Science, vol. 5252, Springer, Berlin (2008)Google Scholar
  20. 20.
    Halmes, Y.Y.: Harmonizing the omnipresence of MCDM in technology, society, and policy. In: Shi, Y., Wang, S., Kou, G., Wallenius, J. (eds.) New State of MCDM in the 21st Century. Selected Paper of the 20th International Conference on Multiple Criteria Decision Making 2009, pp. 13–33. Springer, Heidelberg (2011)Google Scholar
  21. 21.
    Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic, Boston (1999)zbMATHGoogle Scholar
  22. 22.
    Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and Methodology. North-Holland, New York (1983)zbMATHGoogle Scholar
  23. 23.
    Ehrgott, M., Gandibleux, X.: Multiobjective combinatorial optimization—theory, methodology, and applications. In: Ehrgott, M., Gandibleux, X. (eds.) Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, pp. 369–444. Kluwer Academic Publishers, Boston (2002)zbMATHGoogle Scholar
  24. 24.
    Mavrotas, G.: Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems. Appl. Math. Comput. 213, 455–465 (2003)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Ibrahim, A., Rahnamayan, S., Martin, M.V., Deb, K.: 3D-RadVis: Visualization of Pareto Front in Many-Objective Optimization. COIN Report Number 2016013 (2016)Google Scholar
  26. 26.
    Jaszkiewicz, A., Słowiński, R.: The “Light Beam Search” approach—an overview of methodology and applications. Eur. J. Oper. Res. 113(2), 300–314 (1999)CrossRefGoogle Scholar
  27. 27.
    Lotov, A.V., Bushenkov, V.A., Kamenev, G.K.: Interactive Decision Maps. Kluwer Academic Publishers, Boston (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Transport SystemsPoznan University of TechnologyPoznanPoland
  2. 2.Piotr Witort ConsultingPoznanPoland

Personalised recommendations