Skip to main content

Magnetic Resonance Imaging of TMJ

  • Chapter
  • First Online:

Abstract

Magnetic resonance imaging (MRI) is a noninvasive imaging modality of the temporomandibular joint (TMJ). MRI provides a direct form of soft tissue visualization with excellent spatial and contrast resolution on sagittal and coronal MR images and essential information about position, morphology, and signal intensity characteristics of the TMJ structures. In TMJ evaluation most commonly used sequences are spin echo including T1, T2, and proton density (PD)-weighted images. While T1W images best demonstrate the joint anatomy, T2W images well depict both fluid and inflammatory changes with high signal intensity due to the increase in mobile protons resulting in a longer T2. Disc displacements, abnormal morphology of the disc, joint effusion and osteoarthritis, as well as the incidental findings around the TMJ region may be evaluated with MR images without using ionizing radiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Konez O. Manyetik rezonans görüntüleme temel bilgiler. İstanbul: Nobel Offset Matbaa; 1995.

    Google Scholar 

  2. Westbrook C, Roth CK, Talbot J, editors. MRI in practice. 4th ed. West Sussex: Wiley; 2011.

    Google Scholar 

  3. Weishaupt D, Köchli VD, Marincek B. How does MRI work? 2nd ed. Berlin: Springer; 2006.

    Google Scholar 

  4. Bitar R, Leung G, Perng R, Tadros S, Moody AR, Sarrazin J, McGregor C, Christakis M, Symons S, Nelson A, Roberts TP. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics. 2006;26(2):513–37.

    Article  PubMed  Google Scholar 

  5. Gibby WA. Basic principles of magnetic resonance imaging. Neurosurg Clin N Am. 2005;16:1–64.

    Article  PubMed  Google Scholar 

  6. Jacobson HG. Fundamentals of magnetic resonance imaging. Council on Scientific Affairs. JAMA. 1987;258:3417–23.

    Article  Google Scholar 

  7. White CS, Pharoah JM, editors. Oral radiology principles and interpretation. 7th ed. St.Louis: Mosby; 2014.

    Google Scholar 

  8. Landini L, Positano L, Satanrelli MF, editors. Advanced image processing in magnetic resonance imaging. Boca Raton: Taylor and Francis Group; 2005.

    Google Scholar 

  9. Brown MA, Semelka RC. MRI basıc principles and application. 3rd ed. New York: Wiley; 2003.

    Book  Google Scholar 

  10. Diren BH. Manyetik Rezonans Görüntüleme temel bilgiler. Ankara: Mine Offset Matbaa; 1994.

    Google Scholar 

  11. Grover VP, Tognarelli JM, Crossey MM, Cox IJ, Taylor-Robinson SD, McPhail MJ. Magnetic resonance imaging: principles and techniques: lessons for clinicians. J Clin Exp Hepatol. 2015;5(3):246–55.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Collins CM. Electromagnetics in magnetic resonance imaging: physical principles, related applications, and ongoing developments. 1st ed. San Rafael: Morgan & Claypool Publishers; 2016.

    Google Scholar 

  13. Pooley RA. AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging. Radiographics. 2005;25(4):1087–99.

    Article  PubMed  Google Scholar 

  14. Runge MV, Nitz WR, Schmeets SH. The physics of clinical MR taught through images. 2nd ed. New York: Thieme; 2007.

    Google Scholar 

  15. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging. 2007;26(2):375–85.

    Article  PubMed  Google Scholar 

  16. Scherzinger AL, Hendee WR. Basic principles of magnetic resonance imaging-an update. West J Med. 1985;143(6):782–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jung BA, Weigel M. Spin echo magnetic resonance imaging. J Magn Reson Imaging. 2013;37(4):805–17.

    Article  PubMed  Google Scholar 

  18. Mangrum W, Christianson K, Duncan SM, Hoang P, Song AW, Merkle E. Duke review of MRI principles: case review series. 1st ed. Philadelphia: Elsevier; 2012.

    Google Scholar 

  19. Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986;3(6):823–33.

    Article  CAS  PubMed  Google Scholar 

  20. Calle D, Navarro T. Basic pulse sequences in magnetic resonance imaging. Methods Mol Biol. 2018;1718:21–37.

    Article  CAS  PubMed  Google Scholar 

  21. Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. Fat suppression in MR imaging: techniques and pitfalls. Radiographics. 1999;19(2):373–82.

    Article  CAS  PubMed  Google Scholar 

  22. Brandão S, Seixas D, Ayres-Basto M, Castro S, Neto J, Martins C, Ferreira JC, Parada F. Comparing T1-weighted and T2-weighted three-point Dixon technique with conventional T1-weighted fat-saturation and short-tau inversion recovery (STIR) techniques for the study of the lumbar spine in a short-bore MRI machine. Clin Radiol. 2013;68(11):e617–23.

    Article  PubMed  Google Scholar 

  23. Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging. 2008;28(3):543–58.

    Article  PubMed  Google Scholar 

  24. Behr M, Held P, Leibrock A, Fellner C, Handel G. Diagnostic potential of pseudo-dynamic MRI (CINE mode) for evaluation of internal derangement of the TMJ. Eur J Radiol. 1996;23(3):212–5.

    Article  CAS  PubMed  Google Scholar 

  25. Lin WC, Lo CP, Chiang IC, Hsu CC, Hsu WL, Liu DW, Juan YH, Liu GC. The use of pseudo-dynamic magnetic resonance imaging for evaluating the relationship between temporomandibular joint anterior disc displacement and joint pain. Int J Oral Maxillofac Surg. 2012;41(12):1501–4.

    Article  PubMed  Google Scholar 

  26. Styles C, Whyte A. MRI in the assessment of internal derangement and pain within the temporomandibular joint: a pictorial essay. Br J Oral Maxillofac Surg. 2002;40(3):220–8.

    Article  CAS  PubMed  Google Scholar 

  27. Semelka RC, Kelekis NL, Thomasson D, Brown MA, Laub GA. HASTE MR imaging: description of technique and preliminary results in the abdomen. J Magn Reson Imaging. 1996;6(4):698–9.

    Article  CAS  PubMed  Google Scholar 

  28. Henzler T, Dietrich O, Krissak R, Wichmann T, Lanz T, Reiser MF, Schoenberg SO, Fink C. Half-Fourier-acquisition single-shot turbo spin-echo (HASTE) MRI of the lung at 3 tesla using parallel imaging with 32-receiver channel technology. J Magn Reson Imaging. 2009;30(3):541–6.

    Article  PubMed  Google Scholar 

  29. Morimoto Y, Tanaka T, Masumi SI, Tominaga K, Shibuya T, Kito S, et al. Significance of frequency-selective fat saturation T2-weighted MR images for the detection of bone marrow edema in the mandibular condyle. Cranio. 2004;22:115–23.

    Article  PubMed  Google Scholar 

  30. Orhan K, Delilbasi C, Paksoy C. Magnetic resonance imaging evaluation of mandibular condyle bone marrow and temporomandibular joint disc signal intensity in anaemia patients. Dentomaxillofac Radiol. 2009;38(5):247–54.

    Article  CAS  PubMed  Google Scholar 

  31. Tanaka T, Morimoto Y, Masumi S, Tominaga K, Ohba T. Utility of frequency-selective fat saturation T2-weighted MR images for the detection of joint effusion in the temporomandibular joint. Dentomaxillofac Radiol. 2002;31:305–12.

    Article  CAS  PubMed  Google Scholar 

  32. Barchetti F, Stagnitti A, Glorioso M, Al Ansari N, Barchetti G, Pranno N, et al. Static and dynamic MR imaging in the evaluation of temporomandibular disorders. Eur Rev Med Pharmacol Sci. 2014;18:2983–7.

    CAS  PubMed  Google Scholar 

  33. Cassetta M, Barchetti F, Pranno N, Marini M. Comparing proton density and turbo spin echo T2 weighted static sequences with dynamic half-Fourier single-shot TSE pulse sequence at 3.0 T in diagnosis of temporomandibular joint disorders: a prospective study. Dentomaxillofac Radiol. 2014;43:1–7.

    Google Scholar 

  34. Wang EY, Mulholland TP, Pramanik BK, Nusbaum AO, Babb J, Pavone AG, et al. Dynamic sagittal half-Fourier acquired single-shot turbo spin-echo MR imaging of the temporomandibular joint: initial experience and comparison with sagittal oblique proton-attenuation images. Am J Neuroradiol. 2007;28:1126–32.

    Article  CAS  PubMed  Google Scholar 

  35. Conway WF, Hayes CW, Campbell RL. Dynamic magnetic resonance imaging of the temporomandibular joint using FLASH sequences. J Oral Maxillofac Surg. 1988;46:930–8.

    Article  CAS  PubMed  Google Scholar 

  36. Held P, Moritz M, Fellner C, Behr M, Gmeinwieser J. Magnetic resonance of the disk of the temporomandibular joint. MR imaging protocol. Clin Imaging. 1996;20:204–11.

    Article  CAS  PubMed  Google Scholar 

  37. Shimazaki Y, Saito K, Matsukawa S, Onizawa R, Kotake F, Nishio R, et al. Image quality using dynamic MR imaging of the temporomandibular joint with true-FISP sequence. Magn Reson Med Sci. 2007;6:15–20.

    Article  PubMed  Google Scholar 

  38. Schmid-Schwap M, Bristela M, Pittschieler E, Skolka A, Szomolanyi P, Weber M, et al. Biochemical analysis of the articular disc of the temporomandibular joint with magnetic resonance T2 mapping: a feasibility study. Clin Oral Investig. 2014;18:1865–71.

    Article  PubMed  Google Scholar 

  39. Widmann G, Henninger B, Kremser C, Jaschke W. MRI sequences in head & neck radiology—state of the art. Rofo. 2017;189(5):413–22.

    Article  PubMed  Google Scholar 

  40. Zhang S. Real-time magnetic resonance imaging [PhD thesis]. Goettingen: Georg-August-University; 2009.

    Google Scholar 

  41. Joseph AA. Real-time MRI of moving spins using undersampled radial FLASH [PhD thesis]. Bayerischen Julius-Maximilians-Universität Würzburg; 2013.

    Google Scholar 

  42. Wang X. Real-time MRI and model-based reconstruction techniques for parameter mapping of spin-lattice relaxation [PhD thesis]. Goettingen: Georg-August-University; 2016.

    Google Scholar 

  43. Roeloffs V, Voit D, Frahm J. Spoiling without additional gradients: radial FLASH MRI with randomized radiofrequency phases. Magn Reson Med. 2016;75:2094–9.

    Article  CAS  PubMed  Google Scholar 

  44. Uecker M, Thorsten H, Block KT, Frahm J. Image reconstruction by regularized nonlinear inversion—joint estimation of coil sensitivities and image content. Magn Reson Med. 2008;60:674–82.

    Article  PubMed  Google Scholar 

  45. Schaetz A, Voit D, Frahm J, Uecker M. Accelerated computing in magnetic resonance imaging – real-time imaging using non-linear inverse reconstruction. Comput Math Methods Med. 2017;2017:3527269.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Uecker M, Zhang S, Voit D, Merboldt KL, Frahm J. Real-time MRI: recent advances using radial FLASH. Imaging Med. 2012;4(4):1–22.

    Article  CAS  Google Scholar 

  47. Niebergall A, Zhang S, Kunay E, Keydana G, Job M, Uecker M, et al. Real-time MRI of speaking at a resolution of 33 ms: Undersampled radial FLASH with 258 nonlinear inverse reconstruction. Magn Reson Med. 2013;69:477–85.

    Article  PubMed  Google Scholar 

  48. Iltis PW, Frahm J, Voit D, Joseph AA, Schoonderwaldt E, Altenmüller E. High speed real-time MRI of fast tongue movements in elite horn players. Quant Imaging Med Surg. 2015;5:374–81.

    PubMed  PubMed Central  Google Scholar 

  49. Olthoff A, Carstens PO, Zhang S, von Fintel E, Friede T, Lotz J, et al. Evaluation of dysphagia by novel real-time magnetic resonance imaging. Neurology. 2016;264(87):1–7.

    Google Scholar 

  50. Zhang S, Joseph AA, Gross L, Ghadimi M, Frahm J, Beham A. Diagnosis of gastroesophageal reflux disease using real-time magnetic resonance imaging. Sci Rep. 2015;5:12112. https://doi.org/10.1038/srep12112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuriashkin IV, Losonsky JM. Contrast enhancement in magnetic resonance imaging using intravenous paramagnetic contrast media: a review. Vet Radiol Ultrasound. 2000;41(1):4–7.

    Article  CAS  PubMed  Google Scholar 

  52. Hodgson JR. The basic science of MRI. Orthop Trauma. 2011;25(2):119–30.

    Article  Google Scholar 

  53. Ibrahim MA, Dublin AB. Magnetic resonance imaging (MRI), gadolinium. StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2018.

    Google Scholar 

  54. Czeyda-Pommersheim F, Martin DR, Costello JR, Kalb B. Contrast agents for MR imaging. Magn Reson Imaging Clin N Am. 2017;25(4):705–11.

    Article  PubMed  Google Scholar 

  55. Currie S, Hoggard N, Craven IJ, Hadjivassiliou M, Wilkinson ID. Understanding MRI: basic MR physics for physicians. Postgrad Med J. 2013;89(1050):209–23.

    Article  PubMed  Google Scholar 

  56. Runge VM. Safety of approved MR contrast media for intravenous injection. J Magn Reson Imaging. 2000;12(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  57. European Society of Magnetic Resonance in Medicine and Biology (ESMRMB) recommendation on adverse reactions to gadolinium based contrast agents (Gd-CA). 2008.

    Google Scholar 

  58. Dillman JR, Ellis JH, Cohan RH, Strouse PJ, Jan SC. Frequency and severity of acute allergic-like reactions to gadolinium-containing i.v. contrast media in children and adults. AJR Am J Roentgenol. 2007;189(6):1533–8.

    Article  PubMed  Google Scholar 

  59. Li A, Wong CS, Wong MK, Lee CM, Au Yeung MC. Acute adverse reactions to magnetic resonance contrast media—gadolinium chelates. Br J Radiol. 2006;79(941):368–71.

    Article  CAS  PubMed  Google Scholar 

  60. Thomsen HS, Webb JAW, editors. Contrast media. 2nd ed. Berlin: Springer; 2009. p. 123–8.

    Google Scholar 

  61. Hayat MA. Cancer imaging: instrumentation and applications. 1st ed. Amsterdam: Academic Press; 2007.

    Google Scholar 

  62. Cheong BY, Muthupillai R. Nephrogenic systemic fibrosis: a concise review for cardiologists. Tex Heart Inst J. 2010;37(5):508–15.

    PubMed  PubMed Central  Google Scholar 

  63. Marckmann P. An epidemic outbreak of nephrogenic systemic fibrosis in a Danish hospital. Eur J Radiol. 2008;66(2):187–90.

    Article  PubMed  Google Scholar 

  64. Cowper SE, Rabach M, Girardi M. Clinical and histological findings in nephrogenic systemic fibrosis. Eur J Radiol. 2008;66(2):191–9.

    Article  PubMed  Google Scholar 

  65. Thomsen HS, Marckmann P, Logager VB. Nephrogenic systemic fibrosis (NSF): a late adverse reaction to some of the gadolinium based contrast agents. Cancer Imaging. 2007;7:130–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Atkinson D, Hill DL, Stoyle PN, Summers PE, Clare S, Bowtell R, Keevil SF. Automatic compensation of motion artifacts in MRI. Magn Reson Med. 1999;41(1):163–70.

    Article  CAS  PubMed  Google Scholar 

  67. Pusey E, Yoon C, Anselmo ML, Lufkin RB. Aliasing artifacts in MR imaging. Comput Med Imaging Graph. 1988;12(4):219–24.

    Article  CAS  PubMed  Google Scholar 

  68. Hood MN, Ho VB, Smirniotopoulos JG, Szumowski J. Chemical shift: the artifact and clinical tool revisited. Radiographics. 1999;19(2):357–71.

    Article  CAS  PubMed  Google Scholar 

  69. Yanasak NE, Kelly MJ. MR imaging artifacts and parallel imaging techniques with calibration scanning: a new twist on old problems. Radiographics. 2014;34(2):532–48.

    Article  PubMed  Google Scholar 

  70. Stadler A, Schima W, Ba-Ssalamah A, Kettenbach J, Eisenhuber E. Artifacts in body MR imaging: their appearance and how to eliminate them. Eur Radiol. 2007;17(5):1242–55.

    Article  PubMed  Google Scholar 

  71. Arena L, Morehouse HT, Safir J. MR imaging artifacts that simulate disease: how to recognize and eliminate them. Radiographics. 1995;15(6):1373–94.

    Article  CAS  PubMed  Google Scholar 

  72. Taber KH, Herrick RC, Weathers SW, Kumar AJ, Schomer DF, Hayman LA. Pitfalls and artifacts encountered in clinical MR imaging of the spine. Radiographics. 1998;18(6):1499–521.

    Article  CAS  PubMed  Google Scholar 

  73. Klinke T, Daboul A, Maron J, Gredes T, Puls R, Jaghsi A, Biffar R. Artifacts in magnetic resonance imaging and computed tomography caused by dental materials. PLoS One. 2012;7(2):e31766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Smeets R, Schöllchen M, Gauer T, Aarabi G, Assaf AT, Rendenbach C, Beck-Broichsitter B, Semmusch J, Sedlacik J, Heiland M, Fiehler J, Siemonsen S. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study. Dentomaxillofac Radiol. 2017;46(2):20160267.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Poorsattar-Bejeh Mir A, Rahmati-Kamel M. Should the orthodontic brackets always be removed prior to magnetic resonance imaging (MRI)? J Oral Biol Craniofac Res. 2016;6(2):142–52.

    Article  PubMed  Google Scholar 

  76. Dalili Kajan Z, Khademi J, Alizadeh A, Babaei Hemmaty Y, Atrkar Roushan Z. A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. Imaging Sci Dent. 2015;45(3):159–68.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Levine GN, Gomes AS, Arai AE, Bluemke DA, Flamm SD, Kanal E, Manning WJ, Martin ET, Smith JM, Wilke N, Shellock FS, American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization; American Heart Association Council on Clinical Cardiology; American Heart Association Council on Cardiovascular Radiology and Intervention. Safety of magnetic resonance imaging in patients with cardiovascular devices: an American Heart Association scientific statement from the Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology, and the Council on Cardiovascular Radiology and Intervention: endorsed by the American College of Cardiology Foundation, the North American Society for Cardiac Imaging, and the Society for Cardiovascular Magnetic Resonance. Circulation. 2007;116(24):2878–91.

    Article  PubMed  Google Scholar 

  78. Dill T. Contraindications to magnetic resonance imaging: non-invasive imaging. Heart. 2008;94(7):943–8.

    Article  CAS  PubMed  Google Scholar 

  79. Campbell EA, Wilbert CD. Foreign body, imaging. SourceStat pearls [Internet]. Treasure Island: StatPearls Publishing; 2018.

    Google Scholar 

  80. Shellock FG, Crues JV. MRI: biologic effects, safety and patient management. 1st ed. Los Angeles: Biomedical Research Publishing Group; 2014.

    Google Scholar 

  81. Liebman CE, Messersmith RN, Levin DN, Lu CT. MR imaging of inferior vena caval filters: safety and artifacts. AJR Am J Roentgenol. 1988;150(5):1174–6.

    Article  CAS  PubMed  Google Scholar 

  82. Irnich W, Irnich B, Bartsch C, Stertmann WA, Gufler H, Weiler G. Do we need pacemakers resistant to magnetic resonance imaging? Europace. 2005;7(4):353–65.

    Article  PubMed  Google Scholar 

  83. Shellock FG. New metallic implant used for permanent contraception in women: evaluation of MR safety. AJR Am J Roentgenol. 2002;178(6):1513–6.

    Article  PubMed  Google Scholar 

  84. Öztürk E, Doruk C, Orhan KS, Çelik M, Polat B, Güldiken Y. A rare complication of Cochlear implantation after magnetic resonance imaging: reversion of the magnet. J Craniofac Surg. 2017;28(4):e372–4.

    Article  PubMed  Google Scholar 

  85. Tope WD, Shellock FG. Magnetic resonance imaging and permanent cosmetics (tattoos): survey of complications and adverse events. J Magn Reson Imaging. 2002;15(2):180–4.

    Article  PubMed  Google Scholar 

  86. Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology. 2004;232(3):635–52.

    Article  PubMed  Google Scholar 

  87. Dewey M, Schink T, Dewey CF. Claustrophobia during magnetic resonance imaging: cohort study in over 55,000 patients. J Magn Reson Imaging. 2007;26(5):1322–7.

    Article  PubMed  Google Scholar 

  88. Hylton NM. Suspension of breast-feeding following gadopentetate dimeglumine administration. Radiology. 2000;216(2):325–6.

    Article  CAS  PubMed  Google Scholar 

  89. Cowper SE. Nephrogenic systemic fibrosis: an overview. J Am Coll Radiol. 2008;5(1):23–8.

    Article  PubMed  Google Scholar 

  90. Harms SE, Wilk RM, Wolford LM, Chiles DG, Milam SB. The temporomandibular joint: magnetic resonance imaging using surface coils. Radiology. 1985;157(1):133–6.

    Article  CAS  PubMed  Google Scholar 

  91. Katzberg RW. Temporomandibular joint imaging. Radiology. 1989;170(2):297–307.

    Article  CAS  PubMed  Google Scholar 

  92. Alonso MBCC, Gamba TO, Lopes SLP, Cruz AD, Freitas DQ, Haiter-Neto F. Magnetic resonance imaging of the temporomandibular joint acquired using different parameters. J Morphol Sci. 2014;31(2):103–9.

    Article  Google Scholar 

  93. Yang ZJ, Song DH, Dong LL, Li B, Tong DD, Li Q, Zhang FH. Magnetic resonance imaging of temporomandibular joint: morphometric study of asymptomatic volunteers. J Craniofac Surg. 2015;26(2):425–9.

    Article  PubMed  Google Scholar 

  94. Matthews NS. Dislocation of the Temporomandibular joint. 1st ed. New York: Springer; 2018.

    Book  Google Scholar 

  95. Bag AK, Gaddikeri S, Singhal A, Hardin S, Tran BD, Medina JA, Curé JK. Imaging of the temporomandibular joint: an update. World J Radiol. 2014;6(8):567–82.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Brooks SL, Brand JW, Gibbs SJ, Hollender L, Lurie AG, Omnell KA, Westesson PL, White SC. Imaging of the temporomandibular joint: a position paper of the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83(5):609–18.

    Article  CAS  PubMed  Google Scholar 

  97. Arslan A, Orhan K, Paksoy SC, Ucok O, Ozbek M, Dural S, Kanli A. MRI evaluation of the classification, frequency and disk morphology of temporomandibular joint disk displacement: a multicenter retrospective study in a Turkish population. Oral Radiol. 2009;25:14–21.

    Article  Google Scholar 

  98. Foucart JM, Carpentier P, Pajoni D, Marguelles-Bonnet R, Pharaboz C. MR of 732 TMJs: anterior, rotational, partial and sideways disc displacements. Eur J Radiol. 1998;28(1):86–94.

    Article  CAS  PubMed  Google Scholar 

  99. Tasaki MM, Westesson PL, Isberg AM, Ren YF, Tallents RH. Classification and prevalence of temporomandibular joint disk displacement in patients and symptom-free volunteers. Am J Orthod Dentofac Orthop. 1996;109(3):249–62.

    Article  CAS  Google Scholar 

  100. Sena MF, Mesquita KS, Santos FR, Silva FW, Serrano KV. Prevalence of temporomandibular dysfunction in children and adolescents. Rev Paul Pediatr. 2013;31(4):538–45.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Katzberg RW, Westesson PL, Tallents RH, Drake CM. Anatomic disorders of the temporomandibular joint disc in asymptomatic subjects. J Oral Maxillofac Surg. 1996;54(2):147–53. discussion 153–5.

    Article  CAS  PubMed  Google Scholar 

  102. Orhan K, Nishiyama H, Tadashi S, Murakami S, Furukawa S. Comparison of altered signal intensity, position, and morphology of the TMJ disc in MR images corrected for variations in surface coil sensitivity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(4):515–22.

    Article  PubMed  Google Scholar 

  103. Murakami S, Takahashi A, Nishiyama H, Fujishita M, Fuchihata H. Magnetic resonance evaluation of the temporomandibular joint disc position and configuration. Dentomaxillofac Radiol. 1993;22(4):205–7.

    Article  CAS  PubMed  Google Scholar 

  104. Taşkaya-Yilmaz N, Oğütcen-Toller M. Magnetic resonance imaging evaluation of temporomandibular joint disc deformities in relation to type of disc displacement. J Oral Maxillofac Surg. 2001;59(8):860–6.

    Article  PubMed  Google Scholar 

  105. Larheim TA, Katzberg RW, Westesson PL, Tallents RH, Moss ME. MR evidence of temporomandibular joint fluid and condyle marrow alterations: occurrence in asymptomatic volunteers and symptomatic patients. Int J Oral Maxillofac Surg. 2001;30(2):113–7.

    Article  CAS  PubMed  Google Scholar 

  106. Larheim TA, Westesson PL, Hicks DG, Eriksson L, Brown DA. Osteonecrosis of the temporomandibular joint: correlation of magnetic resonance imaging and histology. J Oral Maxillofac Surg. 1999;57(8):888–99.

    Article  CAS  PubMed  Google Scholar 

  107. Sano T, Westesson PL, Larheim TA, Rubin SJ, Tallents RH. Osteoarthritis and abnormal bone marrow of the mandibular condyle. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87(2):243–52.

    Article  CAS  PubMed  Google Scholar 

  108. Sano T. Recent developments in understanding temporomandibular joint disorders. Part 1: bone marrow abnormalities of the mandibular condyle. Dentomaxillofac Radiol. 2000;29(1):7–10.

    Article  CAS  PubMed  Google Scholar 

  109. Lieberman JM, Gardner CL, Motta AO, Schwartz RD. Prevalence of bone marrow signal abnormalities observed in the temporo-mandibular joint using magnetic resonance imaging. J Oral Maxillofac Surg. 1996;54:434–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to Dr. Arzu Alan for providing PVNS images, and Dr. Melis Mısırlı for contribution of the chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orhan, K., Aksoy, S. (2019). Magnetic Resonance Imaging of TMJ. In: Rozylo-Kalinowska, I., Orhan, K. (eds) Imaging of the Temporomandibular Joint. Springer, Cham. https://doi.org/10.1007/978-3-319-99468-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99468-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99467-3

  • Online ISBN: 978-3-319-99468-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics