Bragg Coherent Diffraction Imaging Techniques at 3rd and 4th Generation Light Sources

  • Edwin FohtungEmail author
  • Dmitry Karpov
  • Tilo Baumbach
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 280)


Although X-ray crystallography is established as a state of the art imaging technique that has been revolutionary across materials sciences, physics, chemistry, biology and medicine, the imaging of non-crystalline objects is inaccessible by this method. A promising approach that can overcome this challenge is coherent diffractive imaging (CDI). CDI is a lensless microscopy technique that can provide nanoscale images of both non-crystalline and crystalline objects. The morphology, structure and evolution of an object of interest is probed using a coherent source of photons (often X-rays, visible light) or electrons. Coherency is needed for the interference to produce a usable diffraction pattern. While the diffraction pattern contains the magnitude information of the object in reciprocal space, the phase information can be recovered using iterative feedback algorithms, allowing the reconstruction of the image of an object. As no lenses are used, the image is free of aberrations and hence the resolution is limited only by the wavelength of the probe, exposure, and the robustness of the reconstruction algorithm. This technique has proven crucial for imaging of variety of samples, from nanostructures to bio-tissues and individual cells. The aim of this chapter is to provide a clear picture of recent state-of-the-art developments in CDI techniques, and particularly in Bragg Coherent Diffraction Imaging, applied to oxide nanostructures.


Coherent Diffraction Imaging Linac Coherent Light Source (LCLS) Operando Conditions Crossed Field Configuration Ptychography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. FA9550-14-1-0363 (Program Manager: Dr. Ali Sayir) and by LDRD program at LANL. We also acknowledge support, in part from the LANSCE Professorship sponsored by the National Security Education Center at Los Alamos National Laboratory under subcontract No. 257827.


  1. 1.
    G. Williams, M. Pfeifer, I. Vartanyants, I. Robinson, Phys. Rev. Lett. 90, 175501 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    I. Robinson, R. Harder, Nat. Mater. 8, 291 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    M.A. Pfeifer, G.J. Williams, I.A. Vartanyants, R. Harder, I.K. Robinson, Nature 442, 63 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    D. Sayre, Acta Crystallogr. 5, 843 (1952)CrossRefGoogle Scholar
  5. 5.
    J. Miao, P. Charalambous, J. Kirz, D. Sayre, Nature 400, 342 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    A. Yau, W. Cha, M.W. Kanan, G.B. Stephenson, A. Ulvestad, Science 356, 739 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    J.R. Fienup, Appl. Opt. 21, 2758 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    M. Köhl, A. Minkevich, T. Baumbach, Opt. Exp. 20, 17093 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    D. Karpov, Nat. Commun. 8, 1 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Grigoriev, Phys. Rev. Lett. 100, 027604 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Liu, B. Yang, W. Cao, E. Fohtung, T. Lookman, Phys. Rev. Appl. 8, 034014 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    A. Ulvestad et al., Science 348, 1344 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    A. Ulvestad, Nano Lett. 14, 5123 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    A. Ulvestad, Appl. Phys. Lett. 104, 073108 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    A. Singer, Nano Lett. 14, 5295 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    J.E. Parks, Science 327, 1584 (2010)CrossRefGoogle Scholar
  17. 17.
    C.H. Kim, G. Qi, K. Dahlberg, W. Li, Science 327, 1624 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    J.N. Clark et al., Science 341, 1 (2013)CrossRefGoogle Scholar
  19. 19.
    J.N. Clark, Proc. Natl. Acad. Sci. 112, 7444 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    H. Ichikawa, Nat. Mater. 10, 101 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    R. Mankowsky et al., Nature 516, 71 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    T. Hoshina, S. Wada, Y. Kuroiwa, T. Tsurumi, Appl. Phys. Lett. 93, 192914 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    W. Yang et al., Nat. Commun. 4, 1680 (2013)Google Scholar
  24. 24.
    A. Minkevich, EPL (Europhys. Lett.) 94, 66001 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    A. Minkevich, Phys. Rev. B 84, 054113 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    A. Minkevich, M. Köhl, S. Escoubas, O. Thomas, T. Baumbach, J. Synchrotron Radiat. 21, 774 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Gailhanou, Appl. Phys. Lett. 90, 111914 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    M. Heurlin, Nano Lett. 15, 2462 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    M.C. Newton, S.J. Leake, R. Harder, I.K. Robinson, Nat. Mater. 9, 120 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    G. Williams, H. Quiney, A. Peele, K. Nugent, New J. Phys. 12, 035020 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    P. Thibault et al., Science 321, 379 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    S. Hruszkewycz, Nano Lett. 12, 5148 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    S. Hruszkewycz, Nat. Mater. 16, 244 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    M.G. Rainville, Phys. Rev. B 92, 214102 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PhysicsNew Mexico State UniversityLas CrucesUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.Physical-Technical InstituteNational Research Tomsk Polytechnic UniversityTomskRussia
  4. 4.Institute for Photon Science and Synchrotron Radiation, Kasrlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations