Advertisement

Methodology

Chapter
  • 118 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The methodology applied along this thesis comes from a scientific method in which the available observational data are analyzed with the aim of posing preliminary working hypotheses to be tested with a dynamical model. This line of work starts with the preprocessing of data, a procedure that facilitates the subsequent application of the different methodologies.

Keywords

Expansion Coefficient Time Series Maximum Covariance Analysis Irrotational Component Time-filtered Data Initial Null Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ault TR, Cole JE and St. George S (2012) The amplitude of decadal to multidecadal variability in precipitation simulated by state-of-the-art climate models. Geophysical Research Letters 39 21CrossRefGoogle Scholar
  2. Barnett TP (1995) Monte Carlo Climate Forecasting. Journal of Climate 8 5 1005–1022CrossRefGoogle Scholar
  3. Barnston AG and van den Dool HM (1993) A Degeneracy in Cross-validated skill in regression-based forecasts. Journal of Climate 6 5 963–977CrossRefGoogle Scholar
  4. Bijlsma SJ, Hafkenscheid LM and Lynch P (1986) Computation of the Streamfunction and Velocity Potential and Reconstruction of the Wind Field. Monthly Weather Review 114 8 1547–1551CrossRefGoogle Scholar
  5. Bretherton C, Smith C and Wallace J (1992) An intercomparison of methods for finding coupled patterns in climate data. Journal of Climate 5 6 541–560CrossRefGoogle Scholar
  6. Butterworth S (1930) On the theory of filter amplifiers. Experimental wireless and the wireless engineer 7 536–541Google Scholar
  7. Cherry S (1997) Some comments on singular value decomposition analysis. Journal of Climate 10 7 1759–1761CrossRefGoogle Scholar
  8. Dayan H, Vialard J, Izumo T and Lengaigne M (2014) Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability?. Climate Dynamics 43 5 1311–1325CrossRefGoogle Scholar
  9. Elsner JB and Schmertmann CP (1994) Assessing Forecast Skill through Cross Validation. Weather and Forecasting 9 4 619–624CrossRefGoogle Scholar
  10. Enfield DB and Cid-Serrano L (2006) Projecting the risk of future climate shifts. International Journal of Climatology 26 7 885–895CrossRefGoogle Scholar
  11. Gorgas J, Cardiel N and Zamorano J (2009) Estadística Básica para Estudiantes de Ciencias, 206Google Scholar
  12. Livezey RE and Chen WY (1983) Statistical field significance and its determination by Monte Carlo techniques. Monthly Weather Review 111 1 46–59CrossRefGoogle Scholar
  13. Maia AHN, Meinke H, Lennox S and Stone R (2007) Inferential, nonparametric statistics to assess the quality of probabilistic forecast systems. Monthly Weather Review 135 2 351–362CrossRefGoogle Scholar
  14. Michaelsen J (1987) Cross-validation in statistical climate forecast models. Journal of Climate and Applied Meteorology 26 11 1589–1600CrossRefGoogle Scholar
  15. Mokhov II and Smirnov DA (2006) El Niño–Southern Oscillation drives North Atlantic Oscillation as revealed with nonlinear techniques from climatic indices. Geophysical Research Letters 33 3CrossRefGoogle Scholar
  16. Preisendorfer RW and Mobley C (1988). Principal component analysis in meteorology and oceanography. Elsevier Science Ltd. 17Google Scholar
  17. Roe GH and Steig EJ (2004) Characterization of Millennial-Scale Climate Variability. Journal of Climate 17 10 1929–1944CrossRefGoogle Scholar
  18. Rodríguez-Fonseca B (2001) Relación entre el Régimen de precipitación anómalo en la Península Ibérica y la variabilidad de baja frecuencia del sistema climático en el Atlántico Norte, Ph.D. thesis, University Complutense of MadridGoogle Scholar
  19. Rodríguez-Fonseca B, Janicot S, Mohino E, Losada T, Bader J, Caminade C, Chauvin F, Fontaine B, García-Serrano J, Gervois S, Joly M, Polo I, Ruti P, Roucou P and Voldoire A (2011) Interannual and decadal SST-forced responses of the West African monsoon. Atmospheric Science Letters 12 1 67–74CrossRefGoogle Scholar
  20. Schurer AP, Hegerl GC, Mann ME, Tett SFB and Phipps SJ (2013) Separating forced from chaotic climate variability over the past millennium. Journal of Climate 26 18 6954–6973CrossRefGoogle Scholar
  21. von Storch H and Zwiers F (1999) Statistical analysis in climatology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Widmann M (2005) One-dimensional CCA and SVD, and their relationship to regression maps. Journal of Climate 18 14 2785–2792CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Physical Sciences, Department of Earth Physics and AstrophysicsComplutense University of MadridLos MolinosSpain

Personalised recommendations