Abstract
This paper discusses the application of stochastic Runge-Kutta-like numerical methods with weak and strong convergences for systems of stochastic differential equations in Itô form. At the beginning a brief overview of available publications about stochastic numerical methods and information from the theory of stochastic differential equations are given. Then the difficulties that arise when trying to implement stochastic numerical methods and motivate to use source code generation are described. We discuss some implementation details, such as program languages (Python, Julia) and libraries (Jinja2, Numpy). Also the link to the repository with source code is provided in the article.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jinja2 official site. http://jinja.pocoo.org
Amiri, S., Hosseini, S.M.: Stochastic Runge-Kutta rosenbrock type methods for SDE systems. Appl. Numer. Math. 115, 1–15 (2017). https://doi.org/10.1016/j.apnum.2016.11.010
Bachelier, L.: Théorie de la spéculation. Ann. Sci. l’École Norm. Supér. 3(17), 21–86 (1900)
Bell, J.R.: Algorithm 334: normal random deviates. Commun. ACM 11(7), 498 (1968). https://doi.org/10.1016/j.apnum.2016.11.010
Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017)
Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Ann. Math. Stat. 29(2), 610–611 (1958). https://doi.org/10.1214/aoms/1177706645
Burrage, K., Burrage, P.M.: High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations. Appl. Numer. Math. 22, 81–101 (1996)
Burrage, K., Burrage, P.M.: General order conditions for stochastic Runge-Kutta methods for both commuting and non-commuting stochastic ordinary differential equation systems. Appl. Numer. Math. 28, 161–177 (1998)
Burrage, K., Burrage, P.M.: Order conditions of stochastic Runge-Kutta methods by B-series. SIAM J. Numer. Anal. 38, 1626–1646 (2000)
Burrage, K., Burrage, P.M., Belward, J.A.: A bound on the maximum strong order of stochastic Runge-Kutta methods for stochastic ordinary differential equations. BIT 37, 771–780 (1997)
Burrage, K., Burrage, P.M.: Low rank Runge-kutta methods, symplecticity and stochastic hamiltonian problems with additive noise. J. Computat. Appl. Math. 236(16), 3920–3930 (2012). https://doi.org/10.1016/j.cam.2012.03.007
Burrage, P.M.: Runge-Kutta methods for stochastic differential equations. Ph.D. thesis, University of Qeensland, Australia (1999)
Butcher, J.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, New Zealand (2003)
Debrabant, K., Rößler, A.: Continuous weak approximation for stochastic differential equations. J. Comput. Appl. Math. 214, 259–273 (2008)
Debrabant, K., Rößler, A.: Classification of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations, March 2013. arXiv:1303.4510v1
Gevorkyan, M.N., Velieva, T.R., Korolkova, A.V., Kulyabov, D.S., Sevastyanov, L.A.: Stochastic Runge–Kutta software package for stochastic differential equations. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) Dependability Engineering and Complex Systems. AISC, vol. 470, pp. 169–179. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39639-2_15
Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn. Springer, Berlin (2008). https://doi.org/10.1007/978-3-662-12607-3
Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001). http://www.scipy.org/. Accessed 08 10 2017
Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, 2nd edn. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-662-12616-5
Komori, Y., Mitsuri, T.: Stable ROW-type weak scheme for stochastic differential equations. RIMS Kokyuroku (932), 29–45 (1995)
Ma, Q., Ding, X.: Stochastic symplectic partitioned Runge-Kutta methods for stochastic hamiltonian systems with multiplicative noise. Appl. Math. Comput. 252, 520–534 (2015). https://doi.org/10.1016/j.amc.2014.12.045
Mackevičius, V.: Second-order weak approximations for stratonovich stochastic differential equations. Lith. Math. J. 34(2), 183–200 (1994). https://doi.org/10.1007/BF02333416
Maruyama, G.: Continuous Markov processes and stochastic equations. Rend. Circ. Mat. 4, 48–90 (1955)
Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998). https://doi.org/10.1145/272991.272995
Milstein, G.N.: Approximate integration of stochastic differential equations. Theory Probab. Appl. 19, 557–562 (1974)
Milstein, G.N.: A method of second-order accuracy integration of stochastic differential equations. Theory Probab. Appl. 23, 396–401 (1979)
Milstein, G.N.: Weak approximation of solutions of systems of stochastic differential equations. Theory Probab. Appl. 30, 750–766 (1986)
Øksendal, B.: Stochastic Differential Equations. An Introduction with Applications, 6th edn. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-14394-6
Platen, E.: Beiträge zur zeitdiskreten Approximation von Itoprozessen. Ph.D. thesis, Akad. der Wiss., Berlin (1984)
Rossum, G.: Python reference manual. Technical report, Amsterdam, The Netherlands (1995). https://docs.python.org/3/
Rößler, A.: Strong and weak approximation methods for stochastic differential equations—some recent developments. In: Devroye, L., Karasözen, B., Kohler, M., Korn, R. (eds.) Recent Developments in Applied Probability and Statistics, pp. 127–153. Physica-Verlag HD, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2598-5_6
Rößler, A.: Runge-Kutta methods for the numerical solution of stochastic differential equations. Ph.D. thesis, Technischen Universität Darmstadt, Darmstadt, februar 2003
Rümelin, W.: Numerical treatment of stochastic differential equations. SIAM J. Numer. Anal. 19(3), 604–613 (1982)
Soheili, A.R., Namjoo, M.: Strong approximation of stochastic differential equations with Runge-Kutta methods. World J. Model. Simul. 4(2), 83–93 (2008)
Tocino, A., Ardanuy, R.: Runge-Kutta methods for numerical solution of stochastic differential equations. J. Comput. Appl. Math. 138, 219–241 (2002)
Wiktorsson, M.: Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions. Ann. Appl. Probab. 11(2), 470–487 (2001)
Zhou, W., Zhang, J., Hong, J., Song, S.: Stochastic symplectic Runge-Kutta methods for the strong approximation of hamiltonian systems with additive noise. J. Comput. Appl. Math. 325, 134–148 (2017). https://doi.org/10.1016/j.cam.2017.04.050
Acknowledgments
The work is partially supported by Russian Foundation for Basic Research (RFBR) grants No 16-07-00556. Also the publication was prepared with the support of the “RUDN University Program 5-100”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Gevorkyan, M.N., Demidova, A.V., Korolkova, A.V., Kulyabov, D.S. (2018). Issues in the Software Implementation of Stochastic Numerical Runge–Kutta. In: Vishnevskiy, V., Kozyrev, D. (eds) Distributed Computer and Communication Networks. DCCN 2018. Communications in Computer and Information Science, vol 919. Springer, Cham. https://doi.org/10.1007/978-3-319-99447-5_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-99447-5_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99446-8
Online ISBN: 978-3-319-99447-5
eBook Packages: Computer ScienceComputer Science (R0)