Advertisement

Building a Smart City Ecosystem for Third Party Innovation in the City of Heraklion

  • Manos Kalaitzakis
  • Manousos Bouloukakis
  • Pavlos Charalampidis
  • Manos Dimitrakis
  • Giannis Drossis
  • Alexandros Fragkiadakis
  • Irini Fundulaki
  • Katerina Karagiannaki
  • Antonis Makrogiannakis
  • Georgios Margetis
  • Athanasia Panousopoulou
  • Stefanos Papadakis
  • Vassilis Papakonstantinou
  • Nikolaos Partarakis
  • Stylianos Roubakis
  • Elias Tragos
  • Elisjana Ymeralli
  • Panagiotis Tsakalides
  • Dimitris Plexousakis
  • Constantine Stephanidis
Chapter
Part of the Progress in IS book series (PROIS)

Abstract

This paper describes the implementation of an Internet of Things (IoT) and Open Data infrastructure by the Institute of Computer Science of the Foundation for Research and TechnologyHellas (FORTH-ICS) for the city of Heraklion, focusing on the application of mature research and development outcomes in a Smart City context. These outcomes mainly fall under the domains of Telecommunication and Networks, Information Systems, Signal Processing and Human Computer Interaction. The infrastructure is currently being released and becoming available to the municipality and the public through the Heraklion Smart City web portal. It is expected that in the future such infrastructure will act as one of the pillars for sustainable growth and prosperity in the city, supporting enhanced overview of the municipality over the city that will foster better planning, enhanced social services and improved decision-making, ultimately leading to improved quality of life for all citizens and visitors.

Keywords

IoT Smart cities Open data Data analytics Smart city visualization Sustainable growth Third party innovation 

References

  1. Aggarwal, C. C. (2010). Managing and mining uncertain data. Springer Science & Business Media.Google Scholar
  2. Angelakis, V., et al. (2016). Analysis and evaluation of system performance and scalability. RERUM Project, Deliverable D4.3, FP7-ICT-609094, European Commission.Google Scholar
  3. Anthopoulos, L., & Fitsilis, P. (2010). From digital to ubiquitous cities: defining a common architecture for urban development. In Proceedings of 6th International Conference on Intelligent Environments.  https://doi.org/10.1109/ie.2010.61.
  4. Apolinarski, W., Iqbal, U., & Parreira, J. X. (2014). The GAMBAS middleware and SDK for smart city applications. Proceedings of the IEEE International Conference on Pervasive Computing and Communication Workshops.  https://doi.org/10.1109/percomw.2014.6815176.CrossRefGoogle Scholar
  5. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: a survey. Computer Networks, 54(15), 2787–2805.  https://doi.org/10.1016/j.comnet.2010.05.010.
  6. Bain, M. (2014). Sentilo-sensor and actuator platform for smart cities. Retrieved June 26, 2017, from https://joinup.ec.europa.eu/document/sentilo-sensor-and-actuator-platform-smart-cities.
  7. Batty, M., & Hudson-Smith, A. (2014). Visual analytics for urban design. Urban Design, 132.Google Scholar
  8. Bormann, C., Castellani, A. P., & Shelby, Z. (2012). Coap: An application protocol for billions of tiny internet nodes. IEEE Internet Computing, 16(2), 62–67.CrossRefGoogle Scholar
  9. Caragliu, A., Del Bo, C., & Nijkamp, P. (2011). Smart cities in Europe. Journal of Urban Technology, 18(2), 65–82.CrossRefGoogle Scholar
  10. Carrez, F. et al. (2013). Final architectural reference model for the IoT v3.0. EC FP7 IoT-A Deliverable 1.5, European Commission.Google Scholar
  11. Cartwright, W., Crampton, J., Gartner, G., Miller, S., Mitchell, K., Siekierska, E., et al. (2001). Geospatial information visualization user interface issues. Cartography and Geographic Information Science, 28(1), 45–60.CrossRefGoogle Scholar
  12. Charalampidis, P., Tragos, E., & Fragkiadakis, A. (2017). A fog-enabled IoT platform for efficient management and data collection. In Proceedings of the 2017 IEEE 22nd International Workshop on Computer Aided Modeling and Design of Communication Links and NetworksCAMAD (pp. 1–6).  https://doi.org/10.1109/camad.2017.8031527.
  13. Cheng, B., Longo, S., Cirillo, F., Bauer, M., & Kovacs, E. (2015). Building a big data platform for smart cities: Experience and lessons from Santander. In Proceedings of the 2015 IEEE International Congress on Big Data (pp. 592–599).Google Scholar
  14. Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J. R., Mellouli, S., Nahon, K., Pardo, T. A. & Scholl, H. J. (2012). Understanding smart cities: An integrative framework. In Proceedings of the Annual Hawaii International Conference on System Sciences (pp. 2289–2297).  https://doi.org/10.1109/hicss.2012.615.
  15. Contiki: The open source OS for the internet of things (n.d.). Retrieved June 28, 2017, from http://www.contiki-os.org/.
  16. Csáji, B. C., Kemény, Z., Pedone, G., Kuti, A., & Váncza, J. (2017). Wireless multi-sensor networks for smart cities: A prototype system with statistical data analysis. IEEE Sensors Journal, 17(23), 7667–7676.CrossRefGoogle Scholar
  17. Cuzzocrea, A., & Mansmann, S. (2009). OLAP visualization: models, issues, and techniques. In J. Wang (Ed.), Encyclopedia of Data Warehousing and Mining (pp. 1439–1446), Second Edition. ISBN:1605660108, IGI Global.Google Scholar
  18. Dunkels, A., Gronvall, B., & Voigt, T. (2004). Contiki-a lightweight and flexible operating system for tiny networked sensors. In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (pp. 455–462).Google Scholar
  19. Euromonitor International (2017). Top 100 city destinations ranking 2017. Retrieved June 29, 2017, from http://blog.euromonitor.com/2017/01/top-100-city-destination-ranking-2017.html.
  20. Fisher, D. (2007). Hotmap: Looking at geographic attention. IEEE Transactions on Visualization and Computer Graphics, 13(6), 1184–1191.CrossRefGoogle Scholar
  21. Google Fit (n.d.). https://developers.google.com/fit/. Accessed 30 June 2017.
  22. Habibzadeh, H., Qin, Z., Soyata, T., & Kantarci, B. (2017). Large scale distributed dedicated-and non-dedicated smart city sensing systems. IEEE Sensors Journal, 17(23), 7649–7658.CrossRefGoogle Scholar
  23. Hernández-Muñoz, J. M., Vercher, J. B., Muñoz, L., Galache, J. A., Presser, M., Gómez, L. A. H., et al. (2011). Smart cities at the forefront of the future internet. In J. Domingue, et al. (Eds.), Future internet assembly (pp. 447–462). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  24. IEEE Std 802.15.4 g-2012 (Amendment to IEEE Std 802.15.4–2011)IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-Rate Wire-less Personal Area Networks (LR-WPANs) Amendment 3: Physical Layer (PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering Utility Networks.Google Scholar
  25. IETF (n.d.) IPv6 over low power WPAN (6lowpan). Retrieved 2 July, 2017, from https://datatracker.ietf.org/wg/6lowpan/documents/.
  26. INTER-IoT Project (n.d.). Retrieved 2 July, 2017, from http://www.inter-iot-project.eu/.
  27. Jeong, Y., Joo, H., Hong, G., Shin, D., & Lee, S. (2015). AVIoT: Web-based interactive authoring and visualization of indoor internet of things. IEEE Transactions on Consumer Electronics, 61(3), 295–301.CrossRefGoogle Scholar
  28. Jin, J., Gubbi, J., Marusic, S., & Palaniswami, M. (2014). An information framework for creating a smart city through internet of things. IEEE Internet of Things Journal, 1(2), 112–121.CrossRefGoogle Scholar
  29. JSON Web Tokens (n.d.). Retrieved 2 July, 2017, from https://jwt.io/.
  30. Kolozali, S., Bermudez-Edo, M., Puschmann, D., Ganz, F., & Barnaghi, P. (2014). A knowledge-based approach for real-time IoT data stream annotation and process. In Proceedings of the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (pp. 215–222).Google Scholar
  31. Kraak, M. J., & Van Driel, R. (1997). Principles of hypermaps. Computers & Geosciences, 23(4), 457–464.CrossRefGoogle Scholar
  32. Krco, S., Pokric, B., & Carrez, F. (2014). Designing IoT architecture (s): A European perspective. In 2014 IEEE World Forum on Internet of Things (WF-IoT) (pp. 79–84).Google Scholar
  33. LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics and the path from insights to value. MITSloan Management Review, 52(2), 21.Google Scholar
  34. Lee, J. G., & Kang, M. (2015). Geospatial big data: challenges and opportunities. Big Data Research, 2(2), 74–81.CrossRefGoogle Scholar
  35. Lee, Y. W., & Seungwoo R. (2010). U-city portal for smart ubiquitous middleware. In Proceedings of the 12th International Conference on Advanced Communication Technology (ICACT), Vol. 1.Google Scholar
  36. Le-Phuoc, D., Parreira, J. X., Reynolds, V., & Hauswirth, M. (2010). RDF on the go: An RDF storage and query processor for mobile devices. In Proceedings of the 2010 International Conference on Posters & Demonstrations Track, Vol. 658 (pp. 149–152), CEUR-WS.org.
  37. Libelium (n.d.). http://www.libelium.com. Accessed 4 July 2017.
  38. Liu, Z., Jiang, B., & Heer, J. (2013). imMens: Real-time visual querying of big data. In B. Preim, P. Rheingans, & H. Theisel (Eds.), Computer Graphics Forum (Vol. 32, No. 3, pp. 421–430), Blackwell Publishing Ltd.Google Scholar
  39. LoRa Alliance, LoRaWAN 1.1 Specification (n.d.). Retrieved 2 July, 2017, from https://www.lora-alliance.org/lorawan-for-developers.
  40. Merlino, G., Bruneo, D., Distefano, S., Longo, F., & Puliafito, A. (2014). Stack4Things: integrating IoT with OpenStack in a smart city context. In Proceedings of the 2014 International Conference on smart computing workshops (SMARTCOMP Workshops) (pp. 21–28).Google Scholar
  41. Mikusz, M., Clinch, S., Jones, R., Harding, M., Winstanley, C., & Davies, N. (2015). Repurposing web analytics to support the IoT. Computer, 48(9), 42–49.CrossRefGoogle Scholar
  42. Molinari, A., Maltese, V., Vaccari, L., Almi, A., & Bassi, E. (2014). Big data and open data for a smart city. Trento, Italy: IEEE-TN Smart cities white papers.Google Scholar
  43. Mulligan, C. E., & Olsson, M. (2013). Architectural implications of smart city business models: an evolutionary perspective. IEEE Communications Magazine, 51(6), 80–85.CrossRefGoogle Scholar
  44. Natural Resources Defence Council. (n.d.) What are smarter cities? Retrieved July 2, 2017, from http://smartercities.nrdc.org/about.
  45. Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2017). IoT middleware: A survey on issues and enabling technologies. IEEE Internet of Things Journal, 4(1), 1–20.CrossRefGoogle Scholar
  46. O’Leary, N., & Conway-Jones, D. (2017). Node red-a visual tool for wiring the internet of things. Retrieved July 4, 2017, from http://nodered.org.
  47. Pintus, A., Carboni, D., & Piras, A. (2012). Paraimpu: a platform for a social web of things. Proceedings of the 21st International Conference on World Wide Web (pp. 401–404). ACM.Google Scholar
  48. Polycarpou, E., Lambrinos, L., & Protopapadakis, E. (2013). Smart parking solutions for urban areas. In Proceedings of the 2013 IEEE 14th International Symposium and Workshops on World of Wireless, Mobile and Multimedia Networks (WoWMoM) (pp. 1–6).Google Scholar
  49. PostGIS (n.d.). Retrieved July 5, 2017, from http://postgis.net/.
  50. PostgreSQL (n.d.). Retrieved July 4, 2017, from https://www.postgresql.org.
  51. PostgREST (n.d.). Retrieved July 4, 2017, from https://postgrest.com.
  52. Rathore, M. M., Ahmad, A., Paul, A., & Rho, S. (2016). Urban planning and building smart cities based on the internet of things using big data analytics. Computer Networks, 101, 63–80.CrossRefGoogle Scholar
  53. RERUM EU Project (2016), D4.3Analysis and evaluation of system performance and scalability. Retrieved July 4, 2017, fromhttp://cordis.europa.eu/docs/projects/cnect/4/609094/080/deliverables/001-RERUMdeliverableD43Ares20162302912.pdf.
  54. RERUM: REliable, Resilient and secUre IoT for sMart city applications (n.d.). https://ict-rerum.eu/. Accessed 4 July 2017.
  55. Rutkin, A. (2014). How data can save a city. New Scientist, 224(2990), 24–25.CrossRefGoogle Scholar
  56. Singh, D., Tripathi, G., & Jara, A. J. (2014). A survey of Internet-of-Things: Future vision, architecture, challenges and services. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT) (pp. 287–292).Google Scholar
  57. Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J. P., Riahi, M., & Skorin-Kapov, L. (2015). OpenIoT: Open source internet-of-things in the cloud. In I. Podnar Zarko, K. Pripuzic &, M. Serrano, (Eds.), Interoperability and Open-Source Solutions for the Internet of Things (pp. 13–25). Springer, Cham.Google Scholar
  58. Sun, Y., Song, H., Jara, A. J., & Bie, R. (2016). Internet of things and big data analytics for smart and connected communities. IEEE Access, 4, 766–773.CrossRefGoogle Scholar
  59. TinyOS (n.d.). Retrieved July 4, 2017, fromhttp://tinyos.stanford.edu/tinyos-wiki/index.php/Main_Page.
  60. Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(sup1), 234–240.CrossRefGoogle Scholar
  61. Tragos, E. Z., Bernabe, J. B., Staudemeyer, R. C., Ramos, J. L. H., Fragkiadakis, A., Skarmeta, A., Nati, M. & Gluhak, A. (2016) Trusted IoT in the complex landscape of governance, security, privacy, availability and safety. In O. Vermesan & P. Friess (Eds.), Digitising the industry—Internet of Things connecting the physical, digital and virtual worlds (pp. 185–214). River Publishers Series in Communications, ISBN: 9788793379817.  https://doi.org/10.13052/rp-9788793379824.
  62. Tzagkarakis, G., Seliniotaki, A., Christophides, V., & Tsakalides, P. (2014). Uncertainty-aware sensor data management and early warning for monitoring industrial infrastructures. International Journal of Monitoring and Surveillance Technologies Research (IJMSTR), 2(4), 1–24.CrossRefGoogle Scholar
  63. Tzagkarakis, G., Tsagkatakis, G., Alonso, D., Celada, E., Asensio, C., Panousopoulou, A., Tsakalides, P., & Beferull-Lozano, B. (2015). Signal and data processing techniques for industrial cyber-physical systems. In D. B. Rawat, J. Rodrigues, I. Stojmenovic (Eds.), Cyber Physical Systems: From Theory to Practice (pp. 181–226), CRC Press, Taylor & Francis Group, USA, ISBN 978–1-4822-6333-6.  https://doi.org/10.1201/b19290-12.
  64. Wang, L., Wang, G., & Alexander, C. A. (2015). Big data and visualization: methods, challenges and technology progress. Digital Technologies, 1(1), 33–38.Google Scholar
  65. Wang, M. M., Cao, J. N., Li, J., & Dasi, S. K. (2008). Middleware for wireless sensor networks: A survey. Journal of Computer Science and Technology, 23(3), 305–326.CrossRefGoogle Scholar
  66. Zanella, A., Vangelista, L. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32 (2014).  https://doi.org/10.1109/jiot.2014.2306328.
  67. Zygiaris, S. (2013). Smart city reference model: Assisting planners to conceptualize the building of smart city innovation ecosystems. Journal of the Knowledge Economy, 4(2), 217–231.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manos Kalaitzakis
    • 1
  • Manousos Bouloukakis
    • 1
  • Pavlos Charalampidis
    • 1
  • Manos Dimitrakis
    • 1
  • Giannis Drossis
    • 1
  • Alexandros Fragkiadakis
    • 1
  • Irini Fundulaki
    • 1
  • Katerina Karagiannaki
    • 2
  • Antonis Makrogiannakis
    • 1
  • Georgios Margetis
    • 1
  • Athanasia Panousopoulou
    • 1
  • Stefanos Papadakis
    • 1
  • Vassilis Papakonstantinou
    • 1
  • Nikolaos Partarakis
    • 1
  • Stylianos Roubakis
    • 1
  • Elias Tragos
    • 1
  • Elisjana Ymeralli
    • 1
  • Panagiotis Tsakalides
    • 1
    • 2
  • Dimitris Plexousakis
    • 1
    • 2
  • Constantine Stephanidis
    • 1
    • 2
  1. 1.Foundation for Research and Technology – Hellas (FORTH), Institute of Computer ScienceHeraklion, CreteGreece
  2. 2.Department of Computer Science, University of CreteHeraklion, CreteGreece

Personalised recommendations