Location—Allocation Modeling for Emergency Evacuations in the Aegean Sea

  • Dimitris KavroudakisEmail author
  • Christos Kalloniatis
  • Panagiotis Theodorou
Part of the Progress in IS book series (PROIS)


Insular regions play an important role in Eastern Mediterranean, mostly attributed to their geographical, environmental, social and economic peculiarities. Greek islands in the Aegean Sea are such an example, being attractive tourism destinations with a varying permanent population both island- and season-specific. Such a seasonality of islands’ population, coupled with problems related to their geographical fragmentation, challenges local decision-making regarding, among others, health service provision. This chapter analyzes the spatial distribution of national aero-evacuation means, such as helicopters, in order to inform the debate about de-centralized services of emergency evacuations in island complexes of the Aegean Sea. After discussing potential use of Geographical Datasets for smart decision-making regarding emergency evacuation procedures, the focus of the paper is on a location-allocation model of helicopter bases in the islands of the Aegean Sea. The results of this work aim at shedding some light on the spatial optimization of the helicopter bases in the area; and discussing the trade-off conditions of emergency evacuation services in such a fragmented geographical space. Finally, after utilizing a number of large scale geographical simulations for allocating aero-evacuation bases, the usefulness of spatial analytics for taking more informed decisions is illustrated, especially in areas where dynamic seasonality of population throughout the year challenges health service provision.


Location analysis Location-allocation modelling Emergency evacuation GIS Spatial optimisation 


  1. Alshwesh, I. O., Comber, A., & Brunsdon, C. (2016). GIS-Bbased impact of different search heuristics in relation to demand surface characteristics: comparing P-median with grouping genetic algorithm approaches. Journal of Arabic and Human Sciences, 9(23), 21–39.Google Scholar
  2. Anderson, J. C., Lehnardt, J., & Slater, N. (2010). CouchDB: the definitive guide. ISBN-13 978-0596155896, Sebastopol California: O’Reilly Media Inc.Google Scholar
  3. Apache Software Foundation (2016) Apache Cassandra. Retrieved 9 March 2016.
  4. Berry, B. J., & Harris, D. C. (1970). Walter Christaller: an appreciation. Geographical Review, 60(1), 116–119.CrossRefGoogle Scholar
  5. Berry, B. J., & Pred, A. (1961). Central place studies: A bibliography of theory and applications. Regional Science Research Institute Bibliography, Series No. 1, 1961, Supplemented through 1964, by H. G. Barnum, R. Kasperson and S. Kiuchi, 1965.Google Scholar
  6. Bertot, J. C., & Choi, H. (2013). Big data and e-government: issues, policies, and recommendations. In Proceedings of the 14th Annual International Conference on Digital Government Research (pp. 1–10).
  7. Bollobás, B. (2013). Modern graph theory. ISBN 978-0-387-98488-9, New York: Springer Science & Business Media.Google Scholar
  8. Bondy, J. A., & Murty, U. S. R. (1976). Graph theory with applications. ISBN 0-444-19451-7, New York: Elsevier Science Publishing Co.Google Scholar
  9. Brunsdon, C. (2015). Package tbart—Teitz and Bart’s p-Median Algorithm.,5&as_vis=1&q=Brunsdon,+C.+(2015).+tbart%3A+Teitz+and+Bart+p-Median+Algorithm. Retrieved 16 April 2017.
  10. Churchman, C. W., Ackoff, R. L., & Arnoff, E. L. (1957). Introduction to operations research. New York: Wiley.Google Scholar
  11. Comber, A. J., Brunsdon, C., & Radburn, R. (2011). A spatial analysis of variations in health access: linking geography, socio-economic status and access perceptions. International Journal of Health Geographics, 10(44), 1–11.Google Scholar
  12. CRAN (2014). The Comprehensive R Archive Network. Retrieved 15 March 2017.
  13. Cromley, E. K., & McLafferty, S. L. (2002). Analyzing access to health services. In E. K. Cromley & S. L. McLafferty (Eds.), GIS and public health (pp. 303–337), ISBN 978-1-60918-750-7. New York: Guilford Press.Google Scholar
  14. Christaller, W. (1933). Central places in Southern Germany. Translation into English by Carlisle W. Baskin in 1966. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  15. Dede, E., Govindaraju, M., Gunter, D., Canon, R. S., & Ramakrishnan, L. (2013). Performance evaluation of a mongodb and hadoop platform for scientific data analysis. In Proceedings of the 4th ACM workshop on Scientific Cloud Computing (pp. 13–20).
  16. Demšar, J., Curk, T., Erjavec, A., et al. (2013). Orange: Data mining toolbox in Python. Journal of Machine Learning Research, 14, 2349–2353.Google Scholar
  17. Developers OrientDB (2012). OrientDB. Hybrid Document-Store and Graph NoSQL Database. Retrieved 15 March 2017.
  18. Dicken, P., & Lloyd, P. E. (1990). Location in space: Theoretical perspectives in economic geography (3rd ed.). New York: Harper & Row.Google Scholar
  19. Fischer-Hübner, S. (2001). IT-security and privacy: Design and use of privacy-enhancing security mechanisms. ISBN 978-3-540-45150-1. Springer-Verlag.Google Scholar
  20. Getis, A., & Getis, J. (1966). Christaller’s central place theory. Journal of Geography, 65(5), 220–226 (1966).
  21. Gritzalis, S. (2004). Enhancing web privacy and anonymity in the digital era. Information Management & Computer Security, 12(3), 255–287 (2004).
  22. Grotewold, A. (2016). Von Thunen in retrospect. Economic Geography, 35(4), 346–355 (2016).
  23. Güting, R. H. (1994). An introduction to spatial database systems. International Journal on Very Large Data Bases (VLDB), 3, 357–399.CrossRefGoogle Scholar
  24. Haggett, P., Cliff, A., & Frey, A. (1977). Locational analysis in human geography. London: Edward Arnold.Google Scholar
  25. Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 12(3), 450–459.CrossRefGoogle Scholar
  26. Hillier, F. S., & Lieberman, J. G. (2008). Introduction to operations research. ISBN 978-0-07-337629-5. New York: McGraw-Hill.Google Scholar
  27. Hofmann, M., & Klinkenberg, R. (2013). RapidMiner: Data mining use cases and business analytics applications. ISBN 9781482205497. Boka Raton Florida: CRC Press.Google Scholar
  28. Holvast, J. (1993). Vulnerability and privacy—are we on the way to a risk-free society. Facing the challenge of risk and vulnerability in an information society, 33, 267–279.Google Scholar
  29. Jia, H., Ordóñez, F., & Dessouky, M. (2007). A modeling framework for facility location of medical services for large-scale emergencies. IIE Transactions, 39(1), 41–55 (2007).
  30. Kalloniatis, C., Kavakli, E., & Gritzalis, S. (2008). Addressing privacy requirements in system design: The PriS method. Requirements Engineering, 13(3), 241–255.CrossRefGoogle Scholar
  31. Khan, Z., Anjum, A., & Kiani, S. L. (2013). Cloud based big data analytics for smart future cities. In Proceedings of the 2013 IEEE/ACM International Conference on Utility and Cloud Computing (pp. 381–386).
  32. Knox, P., & Pinch, S. (2014). Urban social geography: An introduction. 6th edition, ISBN 978-0-273-71763-8, Abingdon: Routledge.Google Scholar
  33. Koorn, R., van Gils, H., Ter Hart, J., Overbeek, P., & Tellegen, R. (2004). Privacy enhancing technologies. White paper for decision makers: Ministry of the Interior and Kingdom Relations, the Netherlands, December.Google Scholar
  34. Kuehn, A. A., & Hamburger, J. M. (1963). A heuristic program for locating warehouses. Management Science, 9(4), 643–666 (1963).
  35. Larson, R. C., & Odoni, A. R. (1981). Urban operations research. ISBN 0-13-939447-8. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
  36. Li, Y., & Liu, L. (2012). Assessing the impact of retail location on store performance: a comparison of Wal-Mart and Kmart stores in Cincinnati. Applied Geography, 32, 591–600 (2012).
  37. Love, D., & Lindquist, P. (1995). The geographical accessibility of hospitals to the aged: a geographic information systems analysis within Illinois. Health Services Research, 29(6), 629–651.Google Scholar
  38. Lovelace, R., Birkin, M., Cross, P., & Clarke, M. (2016). From big noise to big data: toward the verification of large data sets for understanding regional retail flows. Geographical Analysis, 48(1), 59–81 (2016).
  39. Marianov, V., & Taborga, P. (2001). Optimal location of public health centres which provide free and paid services. Journal of the Operational Research Society, 52(4), 391–400 (2001).
  40. Markov, Z., & Russell, I. (2006). An introduction to the WEKA data mining system. Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education (pp. 367–368).
  41. Miller, J.J. (2013). Graph database applications and concepts with Neo4j. Proceedings of the Southern Association for Information Systems Conference (pp. 141–147), Atlanta, GA, USA.Google Scholar
  42. Mladenović, N., Brimberg, J., Hansen, P., & Moreno-Pérez, J. A. (2007). The p-median problem: a survey of metaheuristic approaches. European Journal of Operational Research, 179(3), 927–939 (2007).
  43. Moncada, S., Camilleri, M., Formosa, S., & Galea, R. (2010). From incremental to comprehensive: towards island-friendly European Union policymaking. Island Studies Journal, 5(1), 61–88.Google Scholar
  44. Mouratidis, H., Kalloniatis, C., Islam, S., Huget, M.-P., & Gritzalis, S. (2012). Aligning security and privacy to support the development of secure information systems. Journal of Universal Computer Science, 18(12), 1608–1627.Google Scholar
  45. Ndiaye M., & Alfares, K.H. (2008). Modeling health care facility location for moving population groups. Computers & Operations Research, 35, 2154–2161 (2008).
  46. Nuaimi, E. A., Neyadi, H. A., Mohamed, N., & Al-Jaroodi, J. (2015). Applications of big data to smart cities. Journal of Internet Services and Applications, 6(25), 1–15 (2015).
  47. Parker, E. B., & Campbell, J. L. (1998). Measuring access to primary medical care: some examples of the use of geographical information systems. Health & Place, 4(2), 183–193.CrossRefGoogle Scholar
  48. Pfitzmann, A., & Hansen, M. (2010). A terminology for talking about privacy by data minimization: Anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity management. Retrieved 1 April 2017.
  49. Philippe, M. (2009). Territories with specific geographical features. Working papers, No. 2(2009), European Union—Regional Policy.Google Scholar
  50. PostgreSQL Global Development Group (2016). PostgreSQL: The world’s most advanced open source database.Google Scholar
  51. Puga, D. (2002). European regional policies in light of recent location theories. Journal of Economic Geography, 2(4), 373–406 (2002).
  52. Python Software Foundation (2011). Python programming language – Official Website. Python Software Foundation. Retrieved 20 March 2017.
  53. Rainie, L., Kiesler, S., Kang, R., Madden, M., et al. (2013). Anonymity, privacy, and security online. PewResearchCenter. Retrieved 16 April 2017.
  54. ReVelle, C. S., & Swain, R. W. (1970). Central facilities location. Geographical Analysis, 2(1), 30–42 (1970).
  55. Rosenberg, R. S. (1992). The social impact of computers. San Diego: Academic Press Inc.Google Scholar
  56. Rotenberg, M., & Knight, A. (2007). Privacy and human rights: An international survey of privacy laws and developments. ISBN 1-893044-25-9. Electronic Privacy Information Center and Privacy International.Google Scholar
  57. Shams-ur, R., & Smith, K. D. (2000). Use of location-allocation models in health service development planning in developing nations. European Journal of Operational Research, 123, 437–452.CrossRefGoogle Scholar
  58. Stratigea, A., Papadopoulou, C.-A., & Panagiotopoulou, M. (2015). Tools and technologies for planning the development of smart cities. Journal of Urban Technology, 22(2), 43–62 (2015).
  59. Teitz, M. B., & Bart, P. (1968). Heuristic methods for estimating the generalized vertex median of a weighted graph. Operations Research, 16(5), 955–961 (1968).
  60. Toregas, C., Swain, R., ReVelle, C., Bergman, L. (1971). The location of emergency service facilities. Operations Research, 19(6), 1363–1373 (1971).
  61. TRUSTe T (2014). US consumer confidence privacy report: consumer opinion and business impact. Research Report, TRUSTe Inc.Google Scholar
  62. Von Thünen, J. H. (2013). Der isolierte Staat: Beziehung auf Landwirtschaft und Nationalökonomie. ISBN 978-3-86383-224-7. Paderborn Deutchland.Google Scholar
  63. Vora, M. N. (2011). Hadoop-HBase for large-scale data. In Proceedings of the 2011 IEEE International Conference on Computer Science and Network Technology (pp. 601–605).
  64. Warren, S. D., & Brandeis, L. D. (1890). The right to privacy. Harvard Law Review, 193–220.Google Scholar
  65. Westin, A. (1967). Privacy and freedom. Atheneum. Republished by The Bodley Head Ltd. (April 16, 1970), ISBN-13: 978-0370013251.Google Scholar
  66. Wu, X., Zhu, X., Wu, G.-Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107 (2014).
  67. Yeung, A. K., & Hall, G. B. (Eds.). (2007). Spatial database systems: Design, implementation and project management. ISBN-10 1-4020-5393-2 (PB). Dordrecht, The Netherlands: Springer Science & Business Media.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dimitris Kavroudakis
    • 1
    Email author
  • Christos Kalloniatis
    • 2
  • Panagiotis Theodorou
    • 3
  1. 1.Department of Geography, School of Social SciencesUniversity of the AegeanMytiliniGreece
  2. 2.Department of Cultural Technology and CommunicationUniversity of the AegeanMytiliniGreece
  3. 3.General Hospital of MytileneLesvosGreece

Personalised recommendations