Virtual Reality for Smart City Visualization and Monitoring

  • Manousos BouloukakisEmail author
  • Nikolaos Partarakis
  • Ioannis Drossis
  • Manos Kalaitzakis
  • Constantine Stephanidis
Part of the Progress in IS book series (PROIS)


In the present Internet of Things (IoT) era, smart city components (e.g. Smart buildings, Smart infrastructures, etc.) are increasingly embracing cutting edge technologies to support complex scenarios that include decision-making, prediction and intelligent actuation. In this context, there is an increased need for information visualization, so as to propagate information to end users in a smart, sustainable, and resilient way. Currently, despite the growth of the IoT sector, many IoT operators only provide static visualizations. However, interactive data visualizations are required to achieve deeper and faster insights, beyond what is available in existing infrastructure, towards supporting decision-making by city authorities; while offering real time information to citizens. This paper builds on top of ongoing research work carried out at the Human Computer Interaction (HCI) Laboratory of ICS-FORTH in the domain of visualizing and interacting with information in Ambient Intelligence environments, in order to propose the design of an interactive Smart City Visualization framework. In this context, advanced user interaction techniques can be employed, including gesture-based interaction with high resolution large screen displays in alternative contexts of use and immersive VR experiences. To this end, several gesture-based interaction techniques have been validated to propose a sufficiently rich set of gestures that are adaptable to user and context requirements and are ergonomic, intuitive, and easy to perform and remember, while remaining metaphorically appropriate for the addressed functionality. Additionally, Big Data visualization is accomplished by employing 3D solutions. The proposed design supports experiencing and interacting with information through VR technologies and large displays, offering improved data visualization capacity and enhanced data dimensionality, thus overcoming issues related to data complexity and heterogeneity.


Big data Internet of Things Smart infrastructure management Big data visualization 



This work is supported by the FORTH-ICS internal RTD Programme “Ambient Intelligence and Smart Environments”.4


  1. Ahmad, K., & Ansari, M. (2017). Hands-on InfluxDB. In G. Chandra Deka (Ed.), NoSQL Database for storage and retrieval of data in cloud (pp. 341–354).
  2. Batty, M., & Hudson-Smith, A. (2014). Visual analytics for urban design. Urban Design, 132, 38–41.Google Scholar
  3. Blackstock, M., & Lea, R. (2012). IoT mashups with the WoTKit. In Proceedings of the Third International Conference on the Internet of Things (IoT 2012) (pp. 159–166).
  4. Billger, M., Thuvander, L., & Stahre Wästberg, B., (2016). In search of visualization challenges: the development and implementation of visualization tools for supporting dialogue in urban planning processes. Environment and Planning B: Planning and Design, 44(6).
  5. Burdea et al. (2012). Virtual Reality Technology. Wiley—Inderscience.Google Scholar
  6. Donalek, C., Djorgovski, S. G., Cioc, A., Wang, A., Zhang, J., Lawler, E., Yeh, S., Mahabal, A., Graham, M., & Drake, A. (2014). Immersive and collaborative data visualization using virtual reality platforms. In Proceedings of the 2014 IEEE International Conference on Big Data (pp. 609–614).
  7. Colpaert, P., Chua, A., Verborgh, R., Mannens, E., Van de Walle, R., & Vande Moere, A. (2016). What public transit API logs tell us about travel flows. In Proceedings of the 25th International Conference Companion on World Wide Web (pp. 873–878).Google Scholar
  8. De Amicis, R., Conti, G., Simões, B., et al. (2009). Geo-visual analytics for urban design in the context of future internet. International Journal on Interactive Design and Manufacturing, 3(2), 55–63 (2009).
  9. Rajesh Desai, P., Nikhil Desai, P., Deepak Ajmera, K., & Mehta, K. (2014). A review paper on oculus rift-a virtual reality headset. International Journal of Engineering Trends and Technology, 13(4), 175–179.CrossRefGoogle Scholar
  10. Drossis, G., Birliraki, C., Patsiouras, N., & Stephanidis, C. (2016). 3D visualization of large scale data centres. In Proceedings of the 6th International Conference on Cloud Computing and Services Science—vol. 1 and 2 (pp. 388–395). SCITEPRESS-Science and Technology Publications, Lda.
  11. Drossis, G., Birliraki, C., Margetis, G., & Stephanidis, C. (2017). Immersive 3D environment for data centre monitoring based on gesture based interaction. In C. Stephanidis (Ed.), HCI International 2017—Posters’ extended abstracts. HCI 2017. Communications in computer and information science (pp. 103–108), Springer, Cham.
  12. Greco, I., & Cresta, A. (2017). From SMART cities to SMART city-regions: Reflections and proposals. In Gervasi, O., et al. (Eds.), Computational Science and Its Applications—ICCSA 2017, Lecture Notes in Computer Science (pp. 282–295). Springer, Cham.
  13. Gubbi, J., Buyya, R., Slaven, M., Palaniswami, M. (2013). Internet of Things (IoT): a vision, architectural elements, and future directions. Future Generation Computer Systems29(7), 1645–1660 (2013).
  14. Helbig, C., Bauer, H.-S., Rink, K., Wulfmeyer, V., Frank, M., & Kolditz, O. (2014). Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches. Environmental Earth Sciences, 72(10), 3767–3780 (2014).
  15. Huang, X., Zhao, Y., Yang, J., Zhang, C., Ma, C., Ye, X. (2016). TrajGraph: a graph-based visual analytics approach to studying urban network centralities using taxi trajectory data. IEEE Transactions on Visualization and Computer Graphics22(1), 160–169 (2016).
  16. Hutabarat, W., Oyekan, J., Turner, C., Tiwari, A., Prajapat, N., Gan, X.-P., & Waller, A. (2016). Combining virtual reality enabled simulation with 3D scanning technologies towards smart manufacturing. In Proceedings of the 2016 Winter Simulation Conference (pp. 2774–2785).
  17. Ioannides, M., Hadjiprocopi, A., Doulamis, N., Doulamis, A., et al. (2013). Online 4D reconstruction using multi-images available under Open Access. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I-5/W1, 169–174 (2013).
  18. Leitner, M. (2013) (Ed.). Crime modeling and mapping using geospatial technologies. Springer, ISBN 978-94-007-4996-2. doi:
  19. Levine, N. (2006). Crime mapping and the crimestat program. Geographical Analysis 38(1), 41–56 (2006).
  20. Li, X., Lv, Z., Wang, W., Zhang, B., Hu, J., Yin, L. & Feng, S. (2016) WebVRGIS based traffic analysis and visualization system. Advances in Engineering Software, 93, 1–8 (2016).
  21. Marin, G., Dominio, F. & Zanuttigh, P. (2014). Hand gesture recognition with leap motion and kinect devices. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP) (pp. 1565–1569).
  22. Mauser, S., & Burgert, O. (2014). Touch-free, gesture-based control of medical devices and software based on the leap motion controller. Studies in Health Technology and Informatics 196, 265–270 (2014).
  23. Mikusz, M., Clinch, S., Jones, R., Harding, M., Winstanley, C., & Davies, N. (2015). Repurposing web analytics to support the IoT. Computer 48(9), 42–49 (2015).
  24. Nancel, M., Wagner, J., Pietriga, E., Chapuis, O., & Mackay, W. (2011). Mid-air pan-and-zoom on wall-sized displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 177–186).
  25. Lede, N., Chunyan, L., & Meiying, J. (2016). Prediction of construction land in Kunming based on big data. In Proceedings of the 2016 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS) (pp. 147–150).
  26. Olshannikova, E., Ometov, A., Koucheryavy, Y., & Olsson, T. (2015). Visualizing big data with augmented and virtual reality: challenges and research agenda. Journal of Big Data 2(22).
  27. Pereira, F. C., Rodrigues, F., & Ben-Akiva, M. (2015). Using data from the web to predict public transport arrivals under special events scenarios. Journal of Intelligent Transportation Systems, 19(3), 273–288.CrossRefGoogle Scholar
  28. Piumsomboon, T., Altimira, D., Kim, H., Clark, A., Lee, G. & Billinghurst, M. (2014). Grasp-Shell vs gesture-speech: A comparison of direct and indirect natural interaction techniques in augmented reality. In Proceedings of the 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 73–82).
  29. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646 (2016).
  30. Simek, M., Mraz, L., & Oguchi, K. (2013). SensMap: Web framework for complex visualization of indoor & outdoor sensing systems. In Proceedings of the 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN) (pp. 1–5).
  31. Siregar, B., Badril Azmi Nasution, A., & Fahmi, F. (2016). Integrated pollution monitoring system for smart city. In Proceedings of the 2016 International Conference on ICT for Smart Society (ICISS) (pp. 49–52).
  32. Suneson, K. (2014). Virtual reality in city planning—a longitudinal study. Computing in Civil and Building Engineering, 867–874.Google Scholar
  33. Sunesson, K., Martin Allwood, C., Paulin, D., Heldal, I., Roupé, M., Johansson, M., & Westerdahl, B. (2008). Virtual reality as a new tool in the city planning process. Tsinghua Science & Technology, 13, 255–260 (2008).
  34. Tan, C. T., Leong, T. W., Shen, S., Dubravs, C., & Si, C. (2015). Exploring gameplay experiences on the oculus rift. In Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in Play (pp. 253–263).
  35. Tecchia, F., Avveduto, G., Brondi, R., Carrozzino, M., Bergamasco, M., & Alem, L. (2014). I’m in VR!: using your own hands in a fully immersive MR system. In Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology (pp. 73–76). doi>
  36. Torres, R. & Palafox, M. (2015). Interactive virtual reality navigation using cave automatic virtual environment technology. Visualization 90. IEEE Computer Society Press.
  37. Valkov, D., Steinicke, F., Bruder, G., Hinrichs, H. K. (2010). Travelling in 3d virtual environments with foot gestures and a multi-touch enabled wim. In Proceedings of Virtual Reality International Conference (VRIC 2010) (pp. 171–180).Google Scholar
  38. Wang, et al. (2015). Virtual reality based GIS analysis platform. In Proceedings of the International Conference on Neural Information Processing (pp. 638–645). Springer, Cham.Google Scholar
  39. Yafooz, M. S. W., Abidin, Z. Z. S., Omar, N., & Hilles, S. (2016). Interactive big data visualization model based on hot issues (online news articles). In Proceedings of the International Conference on Soft Computing in Data Science (pp. 89–99). Springer Singapore.Google Scholar
  40. Zhang, L., Stoffel, A., Behrisch, M., et al. (2012). Visual analytics for the big data era—a comparative review of state-of-the-art commercial systems. In Proceedings of the 2012 IEEE Conference on Visual Analytics Science and Technology (pp. 173–182).
  41. Zhang, X., Ye, Z., Jin, L., Feng, Z., & Xu, S. (2013). A new writing experience: Finger writing in the air using a kinect sensor. IEEE MultiMedia 20(4), 85–93.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manousos Bouloukakis
    • 1
    Email author
  • Nikolaos Partarakis
    • 1
  • Ioannis Drossis
    • 1
  • Manos Kalaitzakis
    • 1
  • Constantine Stephanidis
    • 1
    • 2
  1. 1.Institute of Computer Science, Foundation for Research and Technology – Hellas (FORTH)HeraklionGreece
  2. 2.Computer Science DepartmentUniversity of CreteHeraklionGreece

Personalised recommendations