Skip to main content

Structural Assessment of Masonry Arches Using Admissible Geometrical Domains

  • Conference paper
Structural Analysis of Historical Constructions

Part of the book series: RILEM Bookseries ((RILEM,volume 18))

Abstract

Following Méry’s thrust line approach, this paper presents an alternative method to define the structural safety of masonry arches, based on admissible geometrical domains. These are implemented in a parametric model built on the reciprocal diagrams of graphic statics. The application to a case study – a semi-circular masonry arch loaded by a central point load – helps drawing a comparison with the classical geometric safety factor as defined by Jacques Heyman. The model is also used to evaluate the impact of geometrical as well as resistance hypotheses on the structural safety level. Analyses first confirm that stereotomy only slightly influences the load bearing capacity of the arch. They also validate the common use of an infinite compressive strength for arches’ constitutive material, since considering a typical value of 10 MPa reduces structural performances by less than 2%. Finally, a methodology using admissible geometrical domains is suggested to get insights on the robustness of masonry arches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ochsendorf J (2002) Collapse of masonry structures. PhD dissertation, University of Cambridge

    Google Scholar 

  2. Huerta S (2001) Mechanics of masonry vaults: the equilibrium approach. In: Lourengo P, Roca P (eds) Historical constructions, pp 47–69

    Google Scholar 

  3. Méry E-H-F (1840) Equilibre des voûtes en berceau. In: Carilian-Goeury, Dalmont (eds) Annales des ponts et chaussées 1er semestre, pp 51–70

    Google Scholar 

  4. Moseley H (1833) On a new principle in statics, called the principle of least pressure. Phil Mag 3:285–288

    Google Scholar 

  5. Dermot O (1999) Funicular analysis of masonry vaults. Comput Struct 73(1–5):187–197

    MATH  Google Scholar 

  6. Ochsendorf J, Hernando JI, Huerta S (2004) Collapse of masonry buttresses. J Archit Eng 10(3):88–97

    Article  Google Scholar 

  7. Block P, Ciblac T, Ochsendorf J (2006) Real-time limit analysis of vaulted masonry buildings. Comput Struct 84:1841–1852

    Article  Google Scholar 

  8. Milankovitch M (1907) Theorie der Druckkurven. Zeitschrift für Mathematik und Physik 55:1–27

    MATH  Google Scholar 

  9. Makris N, Alexakis H (2013) The effect of stereotomy on the shape of the thrust-line and the minimum thickness of semicircular masonry arches. Arch Appl Mech 83(10):1511–1533

    Article  Google Scholar 

  10. Heyman J (1995) The stone skeleton: structural engineering of masonry architecture. Cambridge University Press, Cambridge

    Google Scholar 

  11. Zalewski W, Allen E (1998) Shaping structures: statics. Wiley, New York

    Google Scholar 

  12. Fivet C (2013) Constraint-based graphic statics, a geometrical support for computer-aided structural equilibrium design. PhD dissertation, Université catholique de Louvain

    Google Scholar 

  13. Rondeaux J-F, Zastavni D (2017) A fully graphical approach for limit state analysis of existing structures: application to plane elastic-plastic bended structures and to plane masonry arches. International J Archit Heritage Conserv Anal Restor 12(3):1–23

    Google Scholar 

  14. http://www.rhino3d.com/

  15. http://www.grasshopper3d.com/

  16. Eurocode 1 - actions on structures. Part 1–7 General actions - accidental actions EN 1991-1-7

    Google Scholar 

  17. Zastavni D, Deschuyteneer A, Fivet C (2016) Admissible geometrical domains and graphic statics to evaluate constitutive elements of structural robustness. Int J Space Struct 31(2–4):165–176

    Article  Google Scholar 

  18. Frangopol D, Curley J (1987) Effects of damage and redundancy on structural reliability. J Struct Eng 113(7):1533–1549

    Article  Google Scholar 

  19. Muttoni A, Fernandez Ruiz M (2007) Champs de contraintes pour le béton structural. Tracés 5:17–21

    Google Scholar 

  20. Trautz M (1998) Zur Entwicklung von Form und Struktur historischer Gewölbe aus der Sicht der Statik. PhD dissertation, Institut für Baustatik der Universität Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Deschuyteneer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 RILEM

About this paper

Cite this paper

Deschuyteneer, A., Rondeaux, JF., Zastavni, D. (2019). Structural Assessment of Masonry Arches Using Admissible Geometrical Domains. In: Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F. (eds) Structural Analysis of Historical Constructions. RILEM Bookseries, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-99441-3_116

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99441-3_116

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99440-6

  • Online ISBN: 978-3-319-99441-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics