Physiological Affect and Performance in a Collaborative Serious Game Between Humans and an Autonomous Robot

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11112)


This paper sets out to examine how elicited physiological affect influences the performance of human participants collaborating with the robot partners on a shared serious game task; furthermore, to investigate physiological affect underlying such human-robot proximate collaboration. The participants collaboratively played a turn-taking version of a serious game Tower of Hanoi, where physiological affect was investigated in a valence-arousal space. The arousal was inferred from the galvanic skin response data, while the valence was inferred from the electrocardiography data. It was found that the robot collaborators elicited a higher physiological affect in regard to both arousal and valence, in contrast to their human collaborator counterparts. Furthermore, a comparable performance between all collaborators was found on the serious game task.


Autonomous robots Serious games Collaborative play Robot-assisted play Emotions Physiology Affect 


  1. 1.
    Acharya, U., Joseph, K., Kannathal, N.: Heart rate variability: a review. Med. Biol. Eng. Comput. 44(12), 1031–1051 (2006)CrossRefGoogle Scholar
  2. 2.
    Akselrod, S., Gordon, D., Ubel, F.: Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213, 220–222 (1981)CrossRefGoogle Scholar
  3. 3.
    Benedek, M., Kaernbach, C.: Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology 47(4), 647–658 (2010). Scholar
  4. 4.
    Boucsein, W.: Electrodermal Activity, 2nd edn. Springer, Boston (2012). Scholar
  5. 5.
    Braithwaite, J., Watson, D.: A guide for analysing electrodermal activity (EDA) and skin conductance responses (SCRs) for psychological experiments. Psychophysiology 49, 1017–1034 (2013)Google Scholar
  6. 6.
    Breazeal, C.: Designing Sociable Robots. The MIT Press, Cambridge (2002)zbMATHGoogle Scholar
  7. 7.
    Burgoon, J., Bonito, J.: Interactivity in human-computer interaction: a study of credibility, understanding, and influence. Comput. Hum. Behav. 6(16), 553–574 (2000)CrossRefGoogle Scholar
  8. 8.
    Burgoon, J., Bonito, J.: Testing the interactivity principle: effects of mediation, propinquity, and verbal and nonverbal modalities in interpersonal interaction. J. Commun. 52(3), 657–677 (2002)CrossRefGoogle Scholar
  9. 9.
    Butler, J., Agah, A.: Psychological effects of behavior patterns of a mobile personal robot. Auton. Robot. 10(2), 185–202 (2001)CrossRefGoogle Scholar
  10. 10.
    Csikszentmihalyi, M., Bose, D.K.: Flow: The Psychology of Optimal Experience. Harper Perennial, London (1990)Google Scholar
  11. 11.
    Fiore, S.M., Wiltshire, T.J., Lobato, E.J.C., Jentsch, F.G., Huang, W.H., Axelrod, B.: Toward understanding social cues and signals in human-robot interaction: effects of robot gaze and proxemic behavior. Front. Psychol. 4(NOV), 1–15 (2013). Scholar
  12. 12.
    Geisler, F., Vennewald, N., Kubiak, T., Weber, H.: The impact of heart rate variability on subjective well-being is mediated by emotion regulation. Pers. Individ. Differ. 49(7), 723–728 (2010)CrossRefGoogle Scholar
  13. 13.
    Goodrich, M.A., Schultz, A.C.: Human-robot interaction: a survey. Found. Trends Hum.-Comput. Interact. 1(3), 203–275 (2007). Scholar
  14. 14.
    Hocine, N., Gouaich, A.: Difficulty and scenario adaptation: an approach to customize therapeutic games. In: Serious Games for Healthcare: Applications and Implications, 1st edn, p. 30. IGI Global, Hershey (2013).
  15. 15.
    Kiesler, S., Hinds, P.: Introduction to this special issue on human-robot interaction. Hum.-Comput. Interact. 19(1), 1–8 (2004)CrossRefGoogle Scholar
  16. 16.
    Lane, R., McRae, K., Reiman, E., Chen, K.: Neural correlates of heart rate variability during emotion. Neuroimage 44(1), 213–222 (2009)CrossRefGoogle Scholar
  17. 17.
    Lucas, E.: Récréations mathématiques. Gauthier-Villars, Paris (1893)zbMATHGoogle Scholar
  18. 18.
    Russell, J.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980)CrossRefGoogle Scholar
  19. 19.
    Saul, J., Albrecht, P.: Analysis of long term heart rate variability: methods, 1/f scaling and implications. In: Computers in Cardiology, 1988 edn, pp. 419–422. IEEE Computer Society press, Washington (1987)Google Scholar
  20. 20.
    Shiv, B., Loewenstein, G., Bechara, A., Damasio, H., Damasio, A.R.: Investment behavior and the negative side of emotion. Psychol. Sci. 16(6), 435–9 (2005). Scholar
  21. 21.
    Tarvainen, M.P., Niskanen, J.P., Lipponen, J.A., Ranta-Aho, P.O., Karjalainen, P.A.: Kubios HRV-heart rate variability analysis software. Comput. Methods programs Biomed. 113(1), 210–20 (2014). Scholar
  22. 22.
    Wang, H.M., Huang, S.C.: Musical rhythms affect heart rate variability. Adv. Electr. Eng. 2014, 14 (2014)Google Scholar
  23. 23.
    Xin, M., Sharlin, E.: Playing games with robots-a method for evaluating human-robot interaction. In: Sarkar, N. (ed.) Human-Robot Interaction, September 2007, p. 522. INTECH Education and Publishing, Vienna (2007)Google Scholar
  24. 24.
    Xu, Y., Liu, G., Hao, M., Wen, W., Huang, X.: Analysis of affective ECG signals toward emotion recognition. J. Electron. (China) 27(1), 8–14 (2010)CrossRefGoogle Scholar
  25. 25.
    Zoghbi, S., Parker, C., Croft, E., der Loos, H.V.: Enhancing collaborative human-robot interaction through physiological-signal based communication. In: Proceedings of Workshop on Multimodal Human-Robot Interfaces at IEEE International Conference on Robotics and Automation (ICRA 2010). IEEE (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Blekinge Institute of TechnologyKarlskronaSweden
  2. 2.Linnaeus UniversityVäxjöSweden
  3. 3.CSIRO ICT CentreHobartAustralia

Personalised recommendations