Skip to main content

Oceanization Starts at Depth During Continental Rupturing in the Northern Red Sea

  • Chapter
  • First Online:

Abstract

We present here 3D seismic reflection and gravity data obtained from an off-axis area of the NW Red Sea, as well as results of a study of gabbroic rocks recovered in the same area both from an oil well below a thick evaporitic-sedimentary sequence, and from a layered mafic complex exposed on the Brothers Islets. These new data provide constraints on the composition, depth of emplacement and age of early syn-rift magma intrusions into the deep crust. The Brothers are part of a series of sub-parallel NW-striking topographic highs associated with SW-dipping extensional fault blocks with significant footwall uplift during rifting that brought early syn-rift deep crustal rocks up to the seafloor. Assuming an important role played by magmatism in the evolution of narrow rifts helps to solve the controversy on the nature of the crust in the northern/central Red Sea (i.e., the crust outside the axial oceanic cells is either oceanic or it consists of melt-intruded extended continental crust). Gabbros show petrologic and geochemical signatures similar to those of MORB-type gabbroic cumulates and are compatible with their having been emplaced either in a continental or in an oceanic context. We explored the different hypotheses proposed to explain the lack of magnetic anomalies in the presence of oceanic crust in the northern Red Sea. Our results, combined with a review of all the geophysical and geological data in the area, suggest a stretched and thinned continental crust with few isolated sites of basaltic injections, in line with a model whereby asthenospheric melt intrusions contribute to weaken the lower crust enabling some decoupling between upper and lower crust, protracting upper crust extension and delaying crustal breakup. Our findings show that continental rupture in the northern Red Sea is preceded by intrusion of basaltic melts with MORB-type elemental and isotopic signature, that cooled forming gabbros at progressively shallower crustal depths as rifting progressed toward continental separation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Ahmadi K, Al-Amri A, See L (2014) A spatial statistical analysis of the occurrence of earthquakes along the Red Sea floor spreading: clusters of seismicity. Arab J Geosci 7:2893–2904

    Article  Google Scholar 

  • Almalki KA, Betts PG, Ailleres L (2015) The Red Sea—50 years of geological and geophysical research. Earth Sci Rev 147:109–140

    Google Scholar 

  • Almalki KA, Betts PG, Ailleres L (2016) Incipient seafloor spreading segments: insights from the Red Sea. Geophys Res Lett 43:2709–2715

    Article  Google Scholar 

  • Altherr R, Henjes-Kunst F, Puchelt H, Baumann A (1988) Volcanic activity in the Red Sea axial trough: Evidence for a large mantle diapir? Tectonophysics 150:121–133

    Article  Google Scholar 

  • Andersen DJ, Lindsley D, Davidson PM (1993) QUILF: A Pascal program to assess equilibria among Fe–Mg–Mn–Ti-oxides, pyroxenes, olivine, and quartz. Comp Geosci 19:1333–1350

    Article  Google Scholar 

  • Aoki K, Kushiro I (1968) Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contrib Mineral Petrol 18:326–337

    Article  Google Scholar 

  • Aoki K, Shiba I (1973) Pyroxene from lherzolite inclusions of Itinomegata, Japan. Lithos 6:41–51

    Article  Google Scholar 

  • Arevalo R, McDonough WF (2010) Chemical variations and regional diversity observed in MORB. Chem Geol 271:70–85

    Article  Google Scholar 

  • ArRajehi A, McClusky S, Reilinger R, Daoud M, Alchalbi A, Ergintav S, Gomez F, Sholan J, Bou-Rabee F, Ogubazghi G, Haileab B, Fisseha S, Asfaw L, Mahmoud S, Rayan A, Bendik R, Kogan L (2010) Geodetic constraints on present-day motion of the Arabian Plate: implications for Red Sea and Gulf of Aden rifting. Tectonics 29:TC3011. https://doi.org/10.1029/2009tc002482

  • Augustin N, Devey CW, van der Zwan FM, Feldens P, Tominaga M, Bantan R, Kwasnitschka T (2014) The transition from rifting to spreading in the Red Sea. Earth Planet Sci Lett 395:217–230

    Article  Google Scholar 

  • Barnes SJ (1986) The distribution of chromium among orthopyroxene, spinel and silicate liquid at atmospheric pressure. Geochim Cosmochim Acta 50:1889–1909

    Article  Google Scholar 

  • Bastow ID, Keir D (2011) The protracted development of the continent-ocean transition in Afar. Nature Geosci 4:248–250

    Article  Google Scholar 

  • Beard JS (1986) Characteristic mineralogy of arc-related cumulate gabbros: Implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 14:848–851

    Article  Google Scholar 

  • Beccaluva L, Ohnenstetter D, Ohnenstetter M, Venturelli G (1977) The trace element geochemistry of Corsican ophiolites. Contrib Mineral Petrol 64:11–31

    Article  Google Scholar 

  • Bellahsen N, Faccenna C, Funiciello F, Daniel JM, Jolivet L (2003) Why did Arabia separate from Africa? Insights from 3-D laboratory experiments. Earth Planet Sci Lett 216:365–381

    Article  Google Scholar 

  • Bender JF, Hodges FN, Bence AE (1978) Petrogenesis of basalts from the project Famous area: Experimental study from 0 to 15 kbars. Earth Planet Sci Lett 41:277–302

    Article  Google Scholar 

  • Bernstein S (2006) In situ fractional crystallization of a mafic pluton: Microanalytical study of a Palaeogene gabbronorite plug in East Greenland. Lithos 92:222–237

    Article  Google Scholar 

  • Beutel E, van Wijk J, Ebinger C, Keir D, Agostini A (2010) Formation and stability of magmatic segments in the Main Ethiopian and Afar rifts. Earth Planet Sci Lett 293:225–235

    Article  Google Scholar 

  • Birt CS, Maguire PKH, Khan MA, Thybo H, Keller GR, Patel J (1997) The influence of pre-existing structures on the evolution of the southern Kenya Rift Valley – evidence from seismic and gravity studies. Tectonophysics 278:211–242

    Article  Google Scholar 

  • Bleil U, Hall JH, Johnson HP, Levi S, Schonharting G (1982) The natural magnetization of a 3-kilometer section of Icelandic crust. J Geophys Res 87:6569–6589

    Article  Google Scholar 

  • Bohannon RG, Eittreim SL (1991) Tectonic development of passive continental margins of the southern and central Red Sea with a comparison to Wilkes Land, Antarctica. Tectonophysics 198:129–154

    Article  Google Scholar 

  • Bonatti E (1985) Punctiform initiation of seafloor spreading in the Red Sea during transition from continental to an oceanic rift. Nature 316:33–37

    Article  Google Scholar 

  • Bonatti E, Clocchiatti R, Colantoni P, Gelmini R, Marinelli G, Ottonello G, Santacroce R, Taviani M, Abdel-Meguid AA, Assaf HS, El Tahir MA (1983) Zabargad (St. John) Island: An uplifted fragment of sub-Red Sea lithosphere. J Geol Soc London 14D:667–690

    Google Scholar 

  • Bonatti E, Colantoni P, Della Vedova B, Taviani M (1984) Geology of the Red Sea transitional region (22°-25°N). Ocean Acta 7:385–398

    Google Scholar 

  • Bonatti E, Hamlyn P, Ottonello G (1981) Upper mantle beneath a young oceanic rift - peridotites from the island of Zabargad (Red-Sea). Geology 9:474–479

    Article  Google Scholar 

  • Bonatti E, Ligi M, Carrara G, Gasperini L, Turko N, Perfiliev A, Peyve A, Sciuto PF (1996) Diffuse impact of the Mid Atlantic Ridge with the Romanche transform: An Ultracold Ridge/Transform Intersection. J Geophys Res 101:8043–8054

    Article  Google Scholar 

  • Bonatti E, Ottonello G, Hamlyn PR (1986) Peridotites from the island of Zabargad (Red Sea). J Geophys Res 91:599–631

    Article  Google Scholar 

  • Bonatti E, Seyler M (1987) Crustal underplating and evolution in the Red Sea rift. J Geophys Res 92:12083–12821

    Article  Google Scholar 

  • Borghini G, Rampone E (2007) Postcumulus processes in oceanic-type olivine-rich cumulates: The role of trapped melt crystallization versus melt/rock interaction. Contrib Mineral Petrol 154:619–633

    Article  Google Scholar 

  • Bosworth W (1993) Nature of the Red Sea crust. A controversy revisited: Comment and reply. Geology 21:574–575

    Article  Google Scholar 

  • Bosworth W (2015) Geological evolution of the Red Sea: Historical background, review, and syntesis. In: Rasul NMA, Stewart ICF (eds) The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin. Springer Earth System Sciences, Berlin Heidelberg, pp 45–78

    Google Scholar 

  • Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J African Earth Sci 43:334–378

    Article  Google Scholar 

  • Bosworth W, Stockli D (2016) Early magmatism in the greater Red Sea rift: Timing and significance. Canadian J Earth Sci 53(11):1158–1176. https://doi.org/10.1139/cjes-2016-0019

    Article  Google Scholar 

  • Bosworth W, Taviani M, Rasul N (2018) Neotectonics of the Red Sea, Gulf of Suez and Gulf of Aqaba. In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer Earth System Sciences, Berlin Heidelberg, this issue

    Google Scholar 

  • Botcharnikov RE, Almeev RR, Koepke J, Holtz F (2008) Phase relations and liquid lines of descent in hydrous ferrobasalt – implications for the Skaergaard intrusion and Columbia River flood basalts. J Petrol 29:1687–1727

    Article  Google Scholar 

  • Brey GP, Koehler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrology 31:1353–1378

    Article  Google Scholar 

  • Brueckner HK, Elhaddad MA, Hamelin B, Hemming S, Kröner A, Reisberg L, Seyler M (1995) A Pan-African origin and uplift for gneisses and peridotites of Zabargad Island, Red Sea: A Nd, Sr, Pb and Os isotope study. J Geophys Res 100:22283–22297

    Article  Google Scholar 

  • Casey JF, Banerji D, Zarian P (2007) Geochemical composition of gabbroic rocks from ODP Hole 179–1105A, southwest Indian Ridge. In: Casey JF, Miller DJ (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol. 179. Ocean Drilling Program, College Station, TX, pp 1-125

    Google Scholar 

  • Chang SJ, Van der Lee S (2011) Mantle plumes and associated flow beneath Arabia and East Africa. Earth Planetary Sci Lett 302:448–454

    Article  Google Scholar 

  • Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, Van Calsteren PW, Davidson JP (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U-Th and U–Pb systematics in zircons. J Petrology 46:3–32

    Article  Google Scholar 

  • Chu D, Gordon RG (1998) Current plate motions across the Red Sea. Geophys J Int 135:313–328

    Article  Google Scholar 

  • Cochran JR (1983) A model for the development of the Red Sea. Am Assoc Petrol Geol Bull 67:41–69

    Google Scholar 

  • Cochran JR (2005) Northern Red Sea: Nucleation of an oceanic spreading center within a continental rift. Geochem Geophys Geosyst 6:Q03006

    Article  Google Scholar 

  • Cochran JR, Karner GD (2007) Constraints on the deformation and rupturing of continental lithosphere of the Red Sea: The transition from rifting to drifting. In: Karner GD, Manatschal G, Pinheiro LM (eds) Imaging, mapping and modeling continental lithosphere extension and breakup. Geol Soc London, Spec Publ, vol. 282, pp 265–289

    Google Scholar 

  • Cochran JR, Martinez F (1988) Evidence from the northern Red Sea on the transition from continental to oceanic rifting. Tectonophysics 153:25–53

    Article  Google Scholar 

  • Coleman RG, Fleck RJ, Hedge CE, Ghent ED (1977) The volcanic rocks of southwest Saudi Arabia and the opening of the Red Sea. In: Red Sea Research 1970–1975. Saudi Arabian Directorate General of Mineral Resources Bull 22:Dl-D30

    Google Scholar 

  • Coleman RG, Hadley DG, Fleck RG, Hedge CT, Donato MM (1979) The Miocene Tihama Asir ophiolite and its bearing on the opening of the Red Sea. In: Al-Shanti AM (ed) Evolution and Mineralization of the Arabian Shield. Pergamon Press Ltd, Oxford, pp 173–186

    Chapter  Google Scholar 

  • Coleman RG, McGuire AV (1988) Magma systems related to the Red Sea opening. Tectonophysics 150:77–100

    Article  Google Scholar 

  • Cornen G, Girardeau J, Monnier C (1999) Basalts, underplated gabbros and pyroxenites record the rifting process of the West Iberian margin. Mineral Petrol 67:111–142

    Article  Google Scholar 

  • Crane K, Bonatti E (1987) The role of fracture zones during early Red Sea rifting: Structural analysis using Space Shuttle radar and LANDSAT imagery. J Geol Soc London 144:407–420

    Article  Google Scholar 

  • Dalrymple GB, Alexander EC, Lanphere MA, Kraker GP (1981) Irradiation of samples for 40Ar/39Ar dating using the Geological Survey TRIGA reactor. USGS Professional Papers 1176, U.S. Geological Survey, Reston, VA, USA, p 29

    Google Scholar 

  • Daniels KA, Bastow ID, Keir D, Sparks RSJ, Menard T (2014) Thermal models of dyke intrusion during the development of continent-ocean transition. Earth Planet Sci Lett 285:145–153

    Article  Google Scholar 

  • DeMets C, Merkouriev S (2016) High-resolution estimates of Nubia-Somalia plate motion since 20 Ma from reconstructions of the Southwest Indian Ridge, Red Sea and Gulf of Aden. Geophys J Int 207:317–332

    Article  Google Scholar 

  • Deniel C, Vidal P, Coulon C, Vellutini P-J, Piguet P (1994) Temporal evolution of mantle sources during continental rifting: The volcanism of Djibouti (Afar). J Geophys Res 99:2853–2869

    Article  Google Scholar 

  • Drüppel K, von Seckendorff V, Okrusch M (2001) Subsolidus reaction textures in anorthosites of the Kunene Intrusive Complex, NW Namibia. European J Mineralogy 13:289–309

    Article  Google Scholar 

  • Dyment J, Tapponnier P, Afifi AM, Zinger MA, Franken D, Muzaiyen EA (2013) New seafloor spreading model of the Red Sea: Magnetic anomalies and plate kinematics. AGU Fall Meeting 2013, San Francisco, T21A-2512

    Google Scholar 

  • Ebinger CE, Scholz CA (2012) Continental rift basins: The East African perspective. In: Busby C, Azor A (eds) Tectonics of Sedimentary Basins: Recent Advances. Wiley-Blackwell, Oxford, pp 185–208

    Google Scholar 

  • Ehrhardt A, Hubscher C (2015) The northern Red Sea in transition from rifting to drifting—lessons learned from ocean deeps. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a Young Ocean Basin. Springer Earth System Sciences, Berlin, pp 121–135

    Google Scholar 

  • Ernst WG, Liu J (1998) Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB-A semiquantitative thermobarometer. Am Mineral 83:952–969

    Article  Google Scholar 

  • Feig ST, Koepke J, Snow JE (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Mineral Pet 152:611–638

    Article  Google Scholar 

  • Féménias O, Mercier JCC, Nkono C, Diot H, Berza T, Tatu M, Demaiffe D (2006) Calcic amphibole growth and compositions in calc-alkaline magmas: evidence from the Motru dike swarm (Southern Carpathians, Romania). Am Mineral 91:73–81

    Article  Google Scholar 

  • Frost BR, Lindsley DH (1992) Equilibria among Fe–Ti oxides, pyroxenes, olivine, and quartz: part II application. Am Mineral 77:1004–1020

    Google Scholar 

  • Gale A, Dalton CA, Langmuir CH, Su Y, Schilling J-G (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14:489–518

    Article  Google Scholar 

  • Gallacher R, Keir D, Harmon N (2018) The nature of upper mantle upwelling during initiation of seafloor spreading in the southern Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer Earth System Sciences, Heidelberg (this issue)

    Google Scholar 

  • Gasperini L, Bernoulli D, Bonatti E, Borsetti AM, Ligi M, Negri A, Sartori R, von Salis K (2001) Lower cretaceous to Eocene sedimentary transverse ridge at the Romanche fracture zone and the opening of the equatorial Atlantic. Mar Geol 176:101–119

    Article  Google Scholar 

  • Gaulier J-M, Le Pichon X, Lyberis N, Avedik F, Geli L, Moretti I, Deschamps A, Hafez S (1988) Seismic study of the crustal thickness, northern Red Sea and Gulf of Suez. Tectonophysics 153:55–88

    Article  Google Scholar 

  • Ghebreab W (1998) Tectonics of the Red Sea region reassessed. Earth Sci Rev 45:1–44

    Article  Google Scholar 

  • Girdler RW (1985) Problems concerning the evolution of oceanic lithosphere in the northern Red Sea. Tectonophysics 116:109–122

    Article  Google Scholar 

  • Girdler RW (1991) The Afro-Arabian rift system; an overview. Tectonophysics 197:139–153

    Article  Google Scholar 

  • Girdler RW, Styles P (1974) Two stage seafloor spreading. Nature 247:7–11

    Article  Google Scholar 

  • Ghent ED, Coleman RG, Hadley DG (1980) Ultramafic inclusions and host alkali olivine basalts of the southern coastal plain of the Red Sea. Am J Sci 280A:499–527

    Google Scholar 

  • Gordon G, Hansen B, Scott J, Hirst C, Graham R, Grow T, Spedding A, Fairhead S, Fullarton L, Griffin D (2010) The hydrocarbon prospectivity of the Egyptian North Red Sea basin. In: Vining BA, Pickering SC (eds) Petroleum geology: from mature basins to new frontiers. Proceedings of the 7th Petroleum geology conference, Geol Soc London, pp 783–789

    Google Scholar 

  • Greene DC (1984) Structural geology of the Quseir area, Red Sea coast, Egypt. Dept Geology and Geography, University of Massachusetts, Amherst, MA (contribution no. 52, pp 158)

    Google Scholar 

  • Greiling RO, El Ramly MF, El Arhal H, Stern RJ (1988) Tectonic evolution of the northwestern Red Sea margin as related to basement structure. Tectonophysics 153:179–191

    Article  Google Scholar 

  • Guennoc P, Pautot G, Coutelle (1988) Surficial structures of the northern Red Sea axial valley from 23°N to 28°N: Time and space evolution of neo-oceanic structures. Tectonophysics 153:1–23

    Article  Google Scholar 

  • Haase KM, Muhe R, Stoffers P (2000) Magmatism during extension of the lithosphere: geochemical constraints from lavas of the Shaban Deep, northern Red Sea. Chem Geol 166:225–239

    Article  Google Scholar 

  • Hammond JOS, Kendall J-M, Stuart GW, Keir D, Ebinger C, Ayele A, Belachew M (2011) The nature of the crust beneath the Afar triple junction: evidence from receiver functions. Geochem Geophys Geosyst 12:Q12004

    Article  Google Scholar 

  • Hammond JOS, Kendall J-M, Stuart GW, Ebinger CJ, Bastow ID, Keir D, Ayele A, Belachew M, Goitom B, Ogubazghi G, Wright TJ (2013) Mantle upwelling and initiation of rift segmentation beneath the Afar Depression. Geology 41:635–639

    Article  Google Scholar 

  • Hebert R, Constantin M, Robinson PT (1991) Primary mineralogy of Leg 118 gabbroic rocks and their place in the spectrum of oceanic mafic igneous rocks. In: Von Herzen RP, Robinson PT et al (eds) Proceedings of ocean drilling program, Scientific Results 118. Ocean Drilling Program, College Station, TX, pp 3–20

    Google Scholar 

  • Helz RT (1973) Phase relations of basalts in their melting range at P (sub H2O) = 5 kb as a function of oxygen fugacity; part I, mafic phases. J Pet 14:249–302

    Article  Google Scholar 

  • Hoang CT, Taviani M (1991) Stratigraphic and tectonic implications of uranium-series dated coral reefs from uplifted Red Sea islands. Quat Res 35:264–273

    Article  Google Scholar 

  • Hosny A, Nyblade A (2014) Crustal structure in southeastern Egypt: Symmetric thinning of the northern Red Sea rifted margins. Geology 42:219–222

    Article  Google Scholar 

  • Hosny A, Nyblade A (2016) The crustal structure of Egypt and the northern Red Sea region. Tectonophysics 687:257–267

    Article  Google Scholar 

  • Hutchison I (1985) The effects of sedimentation and compaction on oceanic heat flow. Geophys J Int 82:439–459

    Article  Google Scholar 

  • Jaques AL, Chappell BW (1980) Petrology and trace element geochemistry of the Papuan ultramafic belt. Contrib Mineral Petrol 75:55–70

    Article  Google Scholar 

  • Kempton PD, Downes H, Embey-Istzin A (1997) Mafic granulite xenoliths in Neogene alkali basalts from the western Pannonian basin: Insights into the lower crust of a collapsed orogen. J Petrol 38:941–970

    Article  Google Scholar 

  • Kempton PD, Harmon RS (1992) Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating. Geochim Cosmochim Acta 56:971–986

    Article  Google Scholar 

  • Kendall JM, Lithgow-Bertelloni C (2016) Why is Africa rifting? In: Wright TJ, Ayele A, Ferguson DJ, Kidane T, Vye-Brown C (eds) Magmatic rifting and active volcanism. Geol Soc London, Spec Publ 420, pp 11–30

    Google Scholar 

  • LaBrecque JL, Zitellini N (1985) Continuous sea-floor spreading in Red Sea: an alternative interpretation of magnetic anomaly patterns. Bull Am Assoc Petrol Geol 69:513–524

    Google Scholar 

  • Langmuir CH, Hanson GN (1981) Calculating mineral-melt equilibria with stoichiometry, mass balance and single component distribution coefficients. In: Newton RC, Navrotsky A, Wood BJ (eds) Advances in physical geochemistry 1: thermodynamics of minerals and melts. Springer, Berlin, New York, pp 247–271

    Google Scholar 

  • Le Bas MJ (1962) The role of aluminium in igneous clinopyroxenes with relation to their parentage. Am J Sci 260:267–288

    Article  Google Scholar 

  • Lee CTA, Luffi P, Chin EJ (2011) Building and destroying continental mantle. Ann Rev Earth Planet Sci 39:59–90

    Article  Google Scholar 

  • LePichon X, Gaulier J-M (1988) The rotation of Arabia and the Levant fault system. Tectonophysics 153:271–294

    Article  Google Scholar 

  • Le Roux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612

    Article  Google Scholar 

  • Levi S (1979) Paleomagnetism and some magnetic properties of basalts from the Bermuda Triangle. In: Initial reports of the Deep Sea Drilling Project, vol. 52. U.S. Government Printing Office, Washington, DC, pp 1363–1377

    Google Scholar 

  • Levi S, Riddihough R (1986) Why are marine magnetic anomalies suppressed over sedimented spreading centers. Geology 14:651–654

    Article  Google Scholar 

  • Li J, Sideris MG (1997) Marine gravity and geoid determination by optimal combination of satellite altimetry and shipborne gravimetry data. J Geodesy 71:209–216

    Article  Google Scholar 

  • Ligi M, Bonatti E, Bortoluzzi G, Cipriani A, Cocchi L, Caratori Tontini F, Carminati E, Ottolini L, Schettino A (2012) Birth of an ocean in the Red Sea: Initial pangs. Geochem Geophys Geosyst 13:Q08009

    Article  Google Scholar 

  • Ligi M, Bonatti E, Bosworth W, Cai Y, Cipriani A, Palmiotto C, Ronca S, Seyler M (2018) Birth of an ocean in the Red Sea: oceanic-type basaltic melt intrusions precede continental rupture. Gondwana Res 54:150–160

    Article  Google Scholar 

  • Ligi M, Bonatti E, Caratori Tontini F, Cipriani A, Cocchi L, Schettino A, Bortoluzzi G, Ferrante V, Khalil SM, Mitchell NC, Rasul N (2011) Initial burst of oceanic crust accretion in the Red Sea due to edge-driven mantle convection. Geology 39:1019–1022

    Article  Google Scholar 

  • Ligi M, Bonatti E, Rasul NMA (2015) Seafloor spreading initiation: geophysical and geochemical constraints from the Thetis and Nereus Deeps, Central Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a Young Ocean Basin. Springer Earth System Sciences, Berlin, pp 79–98

    Google Scholar 

  • Ligi M, Bortoluzzi G (1989) PLOTMAP: Geophysical and geological applications of good standard quality cartographic software. Comput Geosci 15:519–585

    Article  Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493

    Google Scholar 

  • Lindsley DH, Frost BR (1992) Equilibria among Fe-Ti oxides, pyroxenes, olivine, and quartz: part l theory. Am Mineral 77:987–1003

    Google Scholar 

  • Loucks RR (1990) Discrimination of ophiolitic from non-ophiolitic ultramafic-mafic allochthon sinorogenic belts by the Al/Ti ratio in clinopyroxenes. Geology 18:346–349

    Article  Google Scholar 

  • Loucks RR (1996) A precise olivine-augite Mg-Fe-exchange geothermometer. Contrib Mineral Petrol 125:140–150

    Article  Google Scholar 

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1 method and results. J Geophys Res 112:B03211

    Google Scholar 

  • Makris MJ, Rhim R (1991) Shear-controlled evolution of the Red Sea: Pull-apart model. Tectonophysics 198:441–466

    Article  Google Scholar 

  • Martinez F, Cochran JR (1989) Geothermal measurements in the northern Red Sea: Implications for lithospheric thermal structure and mode of extension during continental rifting. J Geophys Res 94:12239–12265

    Article  Google Scholar 

  • Mazzucchelli M, Cipriani A, Hemond C, Zanetti A, Bertotto GW, Cingolani CA (2016) Origin of the DUPAL anomaly in mantle xenoliths of Patagonia (Argentina) and geodynamic consequences. Lithos 248–251:257–271

    Article  Google Scholar 

  • McBirney AR, Nicolas A (1997) The skaergaard layered series part ii: magmatic flow and dynamic layering. J Petrol 38:569–580

    Article  Google Scholar 

  • McCarter RL, Fodor RV, Trusdell F (2006) Perspectives on basaltic magma crystallization and differentiation: lava-lake blocks erupted at Mauna Loa Volcano summit, Hawaii. Lithos 90:187–213

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) Composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McGuire AV, Coleman RG (1986) The Jabal Tirf layered gabbro and associated rocks of the Tihama Asir complex, SW Saudi Arabia. J Geol 94:651–665

    Article  Google Scholar 

  • Meyer PS, Dick HJB, Thompson G (1989) Cumulate gabbros from the Southwest Indian Ridge, 54°S–7°16’E: Implications for magmatic processes at a slow spreading ridge. Contrib Mineral Petrol 103:44–63

    Article  Google Scholar 

  • Mitchell NC, Ligi M, Ferrante V, Bonatti E, Rutter E (2010) Submarine salt flows in the central Red Sea. Geol Soc Am Bull 122:701–713

    Article  Google Scholar 

  • Mitchell NC, Ligi M, Feldens P, Hubscher C (2017) Deformation of a young salt giant: Regional topography of the Red Sea Miocene evaporites. Basin Res 29:352–369

    Article  Google Scholar 

  • Mitchell NC, Ligi M, Rohling EJ (2015) Red Sea isolation history by Plio-Pleistocene seismic reflection sequences. Earth Planet Sci Lett 430:387–397

    Article  Google Scholar 

  • Mitchell NC, Park Y (2014) Nature of crust in the central Red Sea. Tectonophysics 628:123–139

    Article  Google Scholar 

  • Mitra S, Princivalle F, Samanta AK, Moon H-S (1999) Geothermometry and mineralogy of two-pyroxene granulites: Evaluation from Mossbauer and X-ray single crystal cation partitioning of Ca-Poor and Ca-Rich pyroxenes. J Geol Soc India 53:537–548

    Google Scholar 

  • Montanini A, Tribuzio R, Vernia L (2008) Petrogenesis of basalts and gabbros from an ancient continent–ocean transition (External Liguride ophiolites, northern Italy). Lithos 101:453–479

    Article  Google Scholar 

  • Mooney WD, Gettings ME, Blank HR, Healy JH (1985) Saudi Arabian seismic refraction profile: A traveltime interpretation of crustal and upper mantle structure. Tectonophysics 111:173–246

    Article  Google Scholar 

  • Müntener O, Manatschal G, Desmurs L, Pettke T (2010) Plagioclase peridotites in ocean–continent transitions: Refertilized mantle domains generated by melt stagnation in the shallow mantle lithosphere. J Petrol 51:255–294

    Article  Google Scholar 

  • Müntener O, Pettke T, Desmurs L, Meier M, Schaltegger U (2004) Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd-isotope evidence and implications for crust-mantle relationships. Earth Planet Sci Lett 221:293–308

    Article  Google Scholar 

  • Nicolas A, Boudier F, Montigny R (1987) Structure of Zabargad Island and early rifting of the Red Sea. J Geophys Res 92:461–474

    Article  Google Scholar 

  • Nielsen RL, Dungan MA (1983) Low pressure mineral-melt equilibria in natural anhydrous mafic systems. Contrib Mineral Petrol 84:310–326

    Article  Google Scholar 

  • Nimis P, Ulmer P (1998) Clinopyroxene geobarometry of magmatic rocks, part 1: an expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib Mineral Petrol 133:314–327

    Article  Google Scholar 

  • Nimis P (1999) Clinopyroxene geobarometry of magmatic rocks: Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contrib Mineral Petrol 135:62–74

    Article  Google Scholar 

  • Niu Y, O’Hara MJ (2003) Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. J Geophys Res 108:ECV5-1–ECV5-19

    Google Scholar 

  • Otten MP (1984) The origin of brown hornblende in the Artfjället gabbro and dolerites. Contrib Mineral Petrol 86:189–199

    Article  Google Scholar 

  • Parker RL (1973) The rapid calculation of potential anomalies. Geophys J R Astr Soc 31:447–455

    Article  Google Scholar 

  • Parsons T, McCarthy J (1996) Crustal and upper mantle velocity structure of the Salton Trough, southeast California. Tectonics 15:456–471

    Article  Google Scholar 

  • Petrini R, Joron JL, Ottonello G, Bonatti E, Seyler M (1988) Basaltic dykes from Zabargad Island, Red Sea: petrology and geochemistry. Tectonophysics 150:229–248

    Article  Google Scholar 

  • Phelps D, Avé Lallemant HG (1980) The Sparta ophiolite complex, northeast Oregon: a plutonic equivalent to low K2O island-arc volcanism. Am J Sci 280A:345–358

    Google Scholar 

  • Prada M, Sallares V, Ranero CR, Vendrell MG, Grevemeyer I, Zitellini N, de Franco R (2014) Seismic structure of the Central Tyrrhenian basin: geophysical constraints on the nature of the main crustal domains. J Geophys Res 119:52–70

    Article  Google Scholar 

  • Prada M, Sallares V, Ranero CR, Vendrell MG, Grevemeyer I, Zitellini N, de Franco R (2015) The complex 3-D transition from continental crust to backarc magmatism and exhumed mantle in the Central Tyrrhenian basin. Geophys J Int 203:63–78

    Article  Google Scholar 

  • Reilinger R, McClusky S, ArRajehi A (2015) Geodetic constraints on the geodynamic evolution of the Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a Young Ocean Basin. Springer Earth System Sciences, Berlin, pp 121–135

    Google Scholar 

  • Rychert CA, Hammond JOS, Harmon N, Kendall JM, Keir D, Ebinger C, Bastow ID, Ayele A, Belachew M, Stuart G (2012) Volcanism in the Afar Rift sustained by decompression melting with minimal plume influence. Nature Geosci 5:406–409

    Article  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Rona PA (1978) Magnetic signatures of hydrothermal alteration and volcanogenic mineral deposits in oceanic crust. J Volcanology Geothermal Res 3:219–225

    Article  Google Scholar 

  • Ross K, Elthon D (1997). Cumulus and postcumulus crystallization in the oceanic crust: Major and trace element geochemistry of Leg 153 gabbroic rocks. In: Karson JA, Cannat M, Miller DJ, Elthon D (eds) Proceedings of the ocean drilling program, scientific results, vol. 153. Ocean Drilling Program, College Station, TX, pp 333–350

    Google Scholar 

  • Sallarès V, Martínez-Loriente S, Prada M, Gràcia E, Ranero CR, Gutscher MA, Bartolome R, Gailler A, Dañobeitia JJ, Zitellini N (2013) Seismic evidence of exhumed mantle rock basement at the Gorringe Bank and the adjacent Horseshoe and Tagus abyssal plains (SW Iberia). Earth Planet Sci Lett 365:120–131

    Article  Google Scholar 

  • Sandwell DT, Muller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346:65–67

    Article  Google Scholar 

  • Schilling JG, Kingsley RH, Hanan BB, McCully BL (1992) Nd–Sr–Pb isotopic variations along the Gulf of Aden; evidence for Afar mantle plume–continental lithosphere interaction. J Geophys Res 97:10927–10966

    Article  Google Scholar 

  • Seifert KE, Chang C-W, Brunotte DA (1997) Evidence from Ocean Drilling Program Leg 149 mafic igneous rocks for ocean crust in the Iberia Abyssal Plain ocean–continent transition. J Geophys Res 102:7915–7928

    Article  Google Scholar 

  • Seifert KE, Gibson I, Weis D, Brunotte D (1996) Geochemistry of metamorphosed cumulate gabbros from Hole 900A, Iberia Abyssal Plain. Proc Ocean Drill Program Sci Results 149:471–485

    Google Scholar 

  • Seyler M, Bonatti E (1988) Petrology of the gneiss/amphibolite metamorphic unit from Zabargad Island, Red Sea. Tectonophysics 150:177–207

    Article  Google Scholar 

  • Shukri NM (1944) On the geology of the Brothers Islets–northern Red Sea. Bull Fac Sci Cairo Univ 25:175–196

    Google Scholar 

  • Stakes D, Mével C, Cannat M, Chaput T (1991) Metamorphic stratigraphy of Hole 735B. In: Von Herzen RP, Robinson PT (eds) Proceedings of the ocean drilling program, scientific results, vol. 118. Ocean Drilling Program, College Station, TX, pp 153–180

    Google Scholar 

  • Stern RJ, Gottfried D, Hedge CE (1984) Late Precambrian rifting and crustal evolution in the Northeastern Desert of Egypt. Geology 12:168–172

    Article  Google Scholar 

  • Stern RJ, Hedge CE (1985) Geochronologic and isotopic constraints on Late Precambrian crustal evolution in the Eastern Desert of Egypt. Am J Sci 285:97–127

    Article  Google Scholar 

  • Stern RJ, Johnson P (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101:29–67

    Article  Google Scholar 

  • Stern RJ, Johnson P (2018) Constraining the opening of the Red Sea: evidence from the Neoproterozoic margins and Cenozoic magmatism for a Volcanic Rifted Margin. In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer Earth System Sciences, Berlin (this issue)

    Google Scholar 

  • Stockly D, Bosworth W (2018) In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer Earth System Sciences, Heidelberg (this issue)

    Google Scholar 

  • Sultan M, Becker R, Arvidson RE, Sore P, Stern RJ, El-Alfy Z, Guinnes EA (1992) Nature of the Red Sea crust, a controversy revisited. Geology 20:593–596

    Article  Google Scholar 

  • Tang Z, Julià J, Zahran H, Mai PM (2016) The lithospheric shear-wave velocity structure of Saudi Arabia: young volcanism in an old shield. Tectonophysics 680:8–27

    Article  Google Scholar 

  • Tapponnier P, Dyment J, Zinger MA, Franken D, Afifi AM, Wyllie A, Ali HG, Hanbal I (2013) Revisiting seafloor-spreading in the Red Sea: basement nature, transforms and ocean-continent boundary. In: AGU Fall Meeting 2013, San Francisco, T12B-04

    Google Scholar 

  • Taviani M, Bonatti E, Colantoni P, Rossi PL (1986) Tectonically uplifted crustal blocks in the northern Red Sea: data from the Brothers Islets. Mem Soc Geol It 27:47–50

    Google Scholar 

  • Taviani M, Rabbi E (1984) Marine botryoidal aragonite in Pleistocene reef limestones of Red Sea offshore islands (Northern Brother and Rocky Island). Miner Petrogr Acta 28:49–58

    Google Scholar 

  • Thybo H, Nielsen CA (2009) Magma-compensated crustal thinning in continental rift zones. Nature 457:873–876

    Article  Google Scholar 

  • Tiezzi LJ, Scott RB (1980) Crystal fractionation in a cumulate gabbro, Mid-Atlantic Ridge, 26°N. J Geophys Res 85:5438–5454

    Article  Google Scholar 

  • Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170

    Article  Google Scholar 

  • Tramontini C, Davis D (1969) A seismic refraction survey in the Red Sea. Geophys J R Astr Soc 17:225–241

    Article  Google Scholar 

  • Tribuzio R, Tiepolo M, Vannucci R, Bottazzi P (1999) Trace element distribution within olivine-bearing gabbros from the northern Apennine ophiolites (Italy): Evidence for post-cumulus crystallization in MOR-type gabbroic rocks. Contrib Mineral Petrol 134:123–133

    Article  Google Scholar 

  • Tziavos IN, Sideris MG, Forsberg R (1998) Combined satellite altimetry and shipborne gravimetry data processing. Mar Geodesy 21:299–317

    Article  Google Scholar 

  • Urquhart A, Bauer S (2015) Experimental determination of single-crystal halite thermal conductivity, diffusivity and specific heat from −75 to 300 °C. Int J Rock Mech Min Sci 78:350–352

    Article  Google Scholar 

  • Villiger S, Ulmer P, Müntener O, Thompson AB (2004) The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization—An experimental study at 1.0 GPa. J Petrol 45:2369–2388

    Article  Google Scholar 

  • Villiger S, Ulmer P, Müntener O (2007) Equilibrium and fractional crystallization experiments at 0.7 GPa. The effect of pressure on phase relations and liquid compositions of tholeiitic magmas. J Petrol 48:159–184

    Article  Google Scholar 

  • Voggenreiter W, Hötzl H (1989) Kinematic evolution of the southwestern Arabian continental margin; implications for the origin of the Red Sea. J Afr Earth Sci 8:541–564

    Article  Google Scholar 

  • Voggenreiter W, Hötzl H, Mechie J (1988) Low-angle detachment origin for the Red Sea Rift System? Tectonophysics 150:51–75

    Article  Google Scholar 

  • Volker F, McCulloch MT (1993) Submarine basalts from the Red Sea: New Pb, Sr, and Nd isotopic data. Geophys Res Lett 20:927–930

    Article  Google Scholar 

  • Walker D, Shibata T, Delong SE (1979) Abyssal tholeiites from the Oceanographer fracture zone. II, Phase equilibria and mixing. Contrib Mineral Petrol 70:111–125

    Article  Google Scholar 

  • Weaver JS, Langmuir CH (1990) Calculation of phase equilibrium in mineral-melt systems. Comput Geosci 16:1–19

    Article  Google Scholar 

  • White RS, McKenzie D, O’Nions RK (1992) Oceanic crustal thickness from seismic measurements and rare earth element inversions. J Geophys Res 97:19683–19715

    Article  Google Scholar 

  • Wolfenden E, Ebinger C, Yirgu G, Renne PR, Kelley SP (2005) Evolution of a volcanic rifted margin: Southern Red Sea, Ethiopia. Bull Geol Soc Am 117:846–864

    Article  Google Scholar 

  • Wright T, Sigmundsson F, Ayele A, Belachew M, Brandsdottir B, Calais E, Ebinger C, Einarsson P, Hamling I, Keir D, Lewi E, Pagli C, Pedersen R (2012) Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nature Geosci 5:242–249

    Article  Google Scholar 

Download references

Acknowledgements

The research was sponsored by the PRIN2012 Programme (Project 20125JKANY_002). The work was supported by the Saudi Geological Survey and the Italian Consiglio Nazionale Ricerche. Fruitful discussions during SGS workshop held in Jeddah on February 14–17, 2016 improved this work. We thank O. R. Berg for providing the gabbro sample from the QUSEIR B-1X drill hole. We are grateful to Y. Cai, A. Cipriani, C. Palmiotto, M. Seyler, G. Barabino and G. Traversa for carrying out part of the analytical work. We thank Dr. Z. A. Nawab, SGS President and Dr A. M. Al Attas, SGS Assistant President, and Dr N. Rasul for their support during this work. We particularly thank P. Betts, C. Ebinger and two anonymous reviewers for their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ligi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ligi, M., Bonatti, E., Bosworth, W., Ronca, S. (2019). Oceanization Starts at Depth During Continental Rupturing in the Northern Red Sea. In: Rasul, N., Stewart, I. (eds) Geological Setting, Palaeoenvironment and Archaeology of the Red Sea. Springer, Cham. https://doi.org/10.1007/978-3-319-99408-6_7

Download citation

Publish with us

Policies and ethics