Skip to main content

Doped Ceria Electrolytes: Synthesis Methods

  • Chapter
  • First Online:
Doped-Ceria Electrolytes

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 362 Accesses

Abstract

The term solid-state synthesis is generally used to describe the interactions among solid reagents, where neither a solvent medium nor controlled vapor-phase interactions are utilized. Pure and well-characterized solid precursors are crucial for every solid-state reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Accardo, L. Spiridigliozzi, R. Cioffi, C. Ferone, E.D. Bartolomeo, S.P. Yoon, G. Dell’Agli, Gadolinium-doped ceria nanopowders synthesized by urea-based homogeneous co-precipitation (UBHP). Mater. Chem. Phys. 187, 149–155 (2017)

    Article  CAS  Google Scholar 

  2. W.H.R. Shaw, J.J. Bordeaux, The decomposition of urea in aqueous media. J. Am. Chem. Soc. 77(18), 4729–4733 (1955)

    Article  CAS  Google Scholar 

  3. H. Qin, X. Tan, W. Huang, J. Jiang, H. Jiang, Application of urea precipitation method in preparation of advanced ceramic powders. Ceram. Int. 41(9), 11598–11604 (2015)

    Article  CAS  Google Scholar 

  4. X. Xu, X. Sun, H. Liu, J.G. Li, X. Li, D. Huo, S. Liu, Synthesis of monodispersed spherical Yttrium Aluminum Garnet (YAG) powders by a homogeneous precipitation method. J. Am. Ceram. Soc. 95(12) (2012)

    Google Scholar 

  5. Z. Mohammadi, A.S.M. Mesgar, F. Rasouli-Disfani, Preparation and characterization of single phase, biphasic and triphasic calcium phosphate whisker-like fibers by homogeneous precipitation using urea. Ceram. Int. 42(6), 6955–6961 (2016)

    Article  CAS  Google Scholar 

  6. Y.S. Wu, Y.H. Lee, H.C. Chang, Preparation and characteristics of nanosized carbonated apatite by urea addition with coprecipitation method. Mater. Sci. Eng., C 29(1), 237–241 (2009)

    Article  CAS  Google Scholar 

  7. J. Subrt, V. Stengl, S. Bakardijeva, L. Szatmary, Synthesis of spherical metal oxide particles using homogeneous precipitation of aqueous solutions of metal sulfates with urea. Powder Technol. 169(1), 33–40 (2006)

    Article  CAS  Google Scholar 

  8. A.M. D’Angelo, N.A.S. Webster, A.L. Chaffee, Characterisation of the phase-transformation behaviour of Ce2O(CO3)2*H2O clusters synthesised from Ce(NO3)3*6H2O and urea. Powder Diffr. 29(S1), S84–S88 (2014)

    Article  CAS  Google Scholar 

  9. J. Li, X. Li, X. Sun, T. Ikegami, T. Ishigaki, Uniform colloidal spheres for (Y1−xGdx)2O3 (x = 0–1): formation mechanism, compositional impacts, and physicochemical properties of the oxides. Chem. Mater. 20(6), 2274–2281 (2008)

    Article  CAS  Google Scholar 

  10. L. Spiridigliozzi, G. Dell’Agli, M. Biesuz, V.M. Sglavo, M. Pansini, Effect of the precipitating agent on the synthesis and sintering behavior of 20 mol% Sm-doped ceria. Adv. Mater. Sci. Eng. 2016, 1–8 (2016)

    Article  CAS  Google Scholar 

  11. A.M. D’Angelo, A.L. Chaffee, Correlations between oxygen uptake and vacancy concentration in Pr-doped CeO2. ACS Omega 2544–2551 (2017)

    Google Scholar 

  12. G. Dell’Agli, L. Spiridigliozzi, A. Marocco, G. Accardo, D. Frattini, Y. Kwon, S.P. Yoon, Morphological and crystalline evolution of Sm-(20 mol%)–doped ceria nanopowders prepared by a combined co-precipitation/hydrothermal synthesis for solid oxide fuel cell applications. Ceram. Int. 43, 12799–12808 (2017)

    Article  CAS  Google Scholar 

  13. M.J. Godinho, R.F. Goncalves, L.P.S. Santos, J.A. Varela, E. Longo, E.R. Leite, Room temperature co-precipitation of nanocrystalline CeO2 and Ce0.8Gd0.2O1.9-d powder. Mater. Lett. 61, 1904–1907 (2007)

    Article  CAS  Google Scholar 

  14. M. Mazaheri, S.A.H. Tabrizi, M. Aminzare, S.K. Sadrnezhaad, Synthesis of CeO2 nanocrystalline powder by precipitation method. Ceram. Mater. 62(4), 529–532 (2010)

    CAS  Google Scholar 

  15. M.N. Rahaman, Ceramic Processing and Sintering (CRC Press, 2003)

    Google Scholar 

  16. C.J. Shih, Y.J. Chen, M.H. Hon, Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process. Mater. Chem. Phys. 121(1–2), 99–102 (2010)

    Article  CAS  Google Scholar 

  17. Y.X. Li, X.Z. Zhou, Y. Wang, X.Z. You, Preparation of nano-sized CeO2 by mechanochemical reaction of cerium carbonate with sodium hydroxide. Mater. Lett. 58(1–2), 245–249 (2004)

    Article  CAS  Google Scholar 

  18. L. Spiridigliozzi, G. Dell’Agli, A. Marocco, M. Pansini, G. Accardo, S.P. Yoon, H.C. Ham, D. Frattini, Engineered co-precipitation chemistry with ammonium carbonate for scalable synthesis and sintering of improved Sm0.2Ce0.8O1.90 and Gd0.16Pr0.04Ce0.8O1.90 electrolytes for IT-SOFCs. J. Ind. Eng. Chem. 59, 17–27 (2018)

    Article  CAS  Google Scholar 

  19. A.M. Kaczmarek, K.V. Hecke, R.V. Deun, Nano- and micro-sized rare-earth carbonates and their use as precursors and sacrificial templates for the synthesis of new innovative materials. Chem. Soc. Rev. 44(8), 2023–2576 (2015)

    Article  Google Scholar 

  20. J.G. Li, T. Ikegami, Y. Wang, T. Mort, Reactive ceria nanopowders via carbonate precipitation. J. Am. Ceram. Soc. 85(9), 2376–2378 (2002)

    Article  CAS  Google Scholar 

  21. D. Zhang, X. Du, L. Shi, R. Gao, Shape-controlled synthesis and catalytic application of ceria nanomaterials. Dalton Trans. 41, 14455–14475 (2012)

    Article  CAS  Google Scholar 

  22. M.Y. Cho, K.C. Roh, S.M. Park, H.J. Choi, J.W. Lee, Control of particle size and shape of precursors for ceria using ammonium carbonate as a precipitant. Mater. Lett. 64(3), 323–326 (2010)

    Article  CAS  Google Scholar 

  23. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 751–767 (1976)

    Google Scholar 

  24. D.W. Joh, M.K. Rath, J.W. Park, J.H. Park, K.H. Cho, S. Lee, K.J. Yoon, J.H. Lee, K.T. Lee, Sintering behavior and electrochemical performances of nano-sized gadolinium-doped ceria via ammonium carbonate assisted co-precipitation for solid oxide fuel cells. J. Alloy. Compd. 682, 188–195 (2016)

    Article  CAS  Google Scholar 

  25. O. Schaf, H. Ghobarkar, P. Knauth, Hydrothermal synthesis of nanomaterials, in Nanostructured Materials (Kluwer Academic Publishers, 2004), pp. 23–42

    Google Scholar 

  26. Z.H. Han, N. Guo, K.B. Tang, S.H. Yu, H.Q. Zhao, Y.T. Qian, Hydrothermal crystal growth and characterization of cerium hydroxycarbonates. J. Cryst. Growth 219(3), 315–318 (2000)

    Article  CAS  Google Scholar 

  27. F. Hrizi, H. Dhaouadi, F. Dhaouadi, Cerium carbonate hydroxide and ceria micro/nanostructure: synthesis, characterization and electrochemical properties of CeCO3OH. Ceram. Int. 40, 25–30 (2014)

    Article  CAS  Google Scholar 

  28. M.Y. Cui, J.X. He, N.P. Lu, Y.Y. Zheng, W.J. Dong, W.H. Tang, B.Y. Chen, C.R. Li, Morphology and size control of cerium carbonate hydroxide and ceria micro/nanostructures by hydrothermal technology. Mater. Chem. Phys. 121, 314–319 (2010)

    Article  CAS  Google Scholar 

  29. F. Meng, C. Zhang, Z. Fan, J. Gong, A. Li, Hydrothermal synthesis of hexagonal CeO2 nanosheets and their room temperature ferromagnetism. J. Alloy. Compd. 647, 1013–1021 (2015)

    Article  CAS  Google Scholar 

  30. M. Hirano, E. Kato, Hydrothermal synthesis of nanocrystalline cerium(IV) oxide powders. J. Am. Ceram. Soc. 82(3) (2004)

    Google Scholar 

  31. Y. Zhang, M. Gao, K. Han, Z. Fang, X. Yin, Z. Xu, Synthesis, characterization and formation mechanism of dumbbell-like YOHCO3 and rod-like Y2(CO3)3 2.5H2O. J. Alloy. Compd. 474, 598–604 (2009)

    Article  CAS  Google Scholar 

  32. B. Vallina, J.D. Rodriguez-Blanco, A.P. Brown, J.A. Blanco, L.G. Benning, The role of amorphous precursors in the crystallization of La and Nd carbonates. Nanoscale 7, 12166–12179 (2015)

    Article  CAS  Google Scholar 

  33. M.Y. Cheng, D.H. Hwang, H.S. Sheu, B.J. Hwang, Formation of Ce0.8Sm0.2O1.9 nanoparticles by urea-based low-temperature hydrothermal process. J. Power Sources 175, 137–144 (2008)

    Article  CAS  Google Scholar 

  34. K. Gao, Y.Y. Zhu, D.Q. Tong, L. Tian, Z.H. Wang, X.Z. Wang, Hydrothermal synthesis of single-crystal CeCO3OH and their thermal conversion to CeO2. Chin. Chem. Lett. 25, 383–386 (2014)

    Article  CAS  Google Scholar 

  35. T. Fan, L. Zhang, H. Jiu, Y. Sun, G. Liu, Y. Sun, Q. Su, Template-free hydrothermal synthesis and characterisation of single crystalline Ce(OH)CO3 and CeO2 with spindle-like structures. IET Micro Nano Lett. 5(4), 230–233 (2010)

    Article  CAS  Google Scholar 

  36. A. Dupont, C. Parent, B.L. Garrec, J.M. Heintz, Size and morphology control of Y2O3 nanopowders via a sol-gel route. J. Solid State Chem. 171(1–2), 152–160 (2003)

    Article  CAS  Google Scholar 

  37. A. Sutka, G. Mezinskis, Sol-gel auto-combustion synthesis of sinel-type ferrite nanomaterials. Front. Mater. Sci. 6(2), 128–141 (2012)

    Article  Google Scholar 

  38. W. Huang, P. Shuk, M. Greenblatt, Properties of sol-gel prepared Ce1−xSmxO2−x/2 solid electrolyte. Solid State Ionics 100(1–2), 23–27 (1997)

    Article  CAS  Google Scholar 

  39. C. Laberty-Robert, J.W. Long, E.M. Lucas, K.A. Pettigrew, R.M. Stroud, M.S. Doescher, D.R. Rolison, Sol-gel-derived ceria nanoarchitectures: synthesis, characterization, and electrical properties. Chem. Mater. 18, 50–58 (2006)

    Article  CAS  Google Scholar 

  40. J.M. Wallace, J.K. Rice, J.J. Pietron, R.M. Stroud, J.W. Long, D.R. Rolison, Silica nanoarchitectures incorporating self-organized protein superstructures with gas-phase bioactivity. Nano Lett. 3(10), 1463–1467 (2003)

    Article  CAS  Google Scholar 

  41. A.G. Saskia, Microwave chemistry. Chem. Soc. Rev. 3 (1997)

    Google Scholar 

  42. Y. Chiang, C. Shih, A. Sie, M. Li, C. Peng, P. Shen, Y. Wang, T. Guo, P. Chen, Highly stable perovskite solar cells with all-inorganic selective contacts from microwave-synthesized oxide nanoparticles. J. Mater. Chem. A (In press) (2017)

    Google Scholar 

  43. Y. Ikuma, H. Oosawa, E. Shimada, M. Kamiya, Effect of microwave radiation on the formation of Ce2O(CO3)2*H2O in aqueous solution. Solid State Ionics 151(1–4), 347–352 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Spiridigliozzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spiridigliozzi, L. (2018). Doped Ceria Electrolytes: Synthesis Methods. In: Doped-Ceria Electrolytes. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99395-9_4

Download citation

Publish with us

Policies and ethics