Skip to main content

A Method for Boundary Processing in Three-Way Decisions Based on Hierarchical Feature Representation

  • Conference paper
  • First Online:
Book cover Rough Sets (IJCRS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11103))

Included in the following conference series:

Abstract

For binary classification problem, all samples can be divided into three regions based on the three-way decision theory: positive regions, negative regions and boundary regions. These samples in boundary regions may be impossible to make a definite decision for lacking of detailed information. More information obtained from positive and negative regions is crucial for boundary processing. In the real word, people may identify positive regions based on one rule, and identify negative regions on another. The samples in boundary regions are also divided to positive or negative regions based on different rules. In this paper, we propose a method for processing boundary regions in three-way decisions based on hierarchical feature representation (\(HFR-TWD\)), which can obtain hierarchical feature representation of positive and negative regions. Firstly, all samples are divided into three regions by MinCA, which builds the most accurate covers for each class. Then samples in positive regions and negative regions respectively construct hierarchical feature representation. Thirdly, the best feature representation of each class is selected by using boundary region validating. Finally, boundary samples in test set are divided according to best feature representation of each class. Experiments show that the proposed method \(HFR-TWD\) improves classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao, Y.: The superiority of three-way decisions in probabilistic rough set models. Inf. Sci. 181(6), 1080–1096 (2011)

    Article  MathSciNet  Google Scholar 

  2. Yao, Y.: Three-way decision: an interpretation of rules in rough set theory. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS (LNAI), vol. 5589, pp. 642–649. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02962-2_81

    Chapter  Google Scholar 

  3. Yao, Y.: Three-way decisions with probabilistic rough sets. Inf. Sci. 180(3), 341–353 (2010)

    Article  MathSciNet  Google Scholar 

  4. Yao, Y.: Two semantic issues in a probabilistic rough set model. Fundamenta Informaticae 108(3), 249–265 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Liu, D., Liang, D., Wang, C.: A novel three-way decision model based on incomplete information system. Knowl. Based Syst. 91(C), 32–45 (2016)

    Article  Google Scholar 

  6. Yao, Y.: Granular computing and sequential three-way decisions. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS (LNAI), vol. 8171, pp. 16–27. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41299-8_3

    Chapter  Google Scholar 

  7. Xu, J., Miao, D.Q.: A three-way decisions model with probablistic rough sets for stream computing. Int. J. Approx. Reason. 88, 1–22 (2017)

    Article  Google Scholar 

  8. Gao, C., Yao, Y.: Actionable strategies in three-way decisions. Knowl. Based Syst. 133, 183–199 (2017)

    Article  Google Scholar 

  9. Qian, J., Dang, C., Yue, X.: Attribute reduction for sequential three-way decisions under dynamic granulation. Int. J. Approx. Reason. 85, 196–216 (2017)

    Article  MathSciNet  Google Scholar 

  10. Cabitza, F., Ciucci, D., Locora, A.: Exploiting collective knowledge with three-way decision theory: cases from the questionaire-based research. Int. J. Approx. Reason. 83, 356–370 (2017)

    Article  Google Scholar 

  11. Kaur, H., Sharma, A.: Novel email spam classification using integrated particle swarm optimization and J48. Int. J. Comput. Appl. 149(7), 23–27 (2016)

    Google Scholar 

  12. Zhou, B., Yao, Y., Luo, J.: Cost-sensitive three-way email spam filtering. J. Intell. Inf. Syst. 42(1), 19–45 (2014)

    Article  Google Scholar 

  13. Li, Y.F., Zhang, L.B., Xu, Y., Yao, Y.Y.: Enhancing binary classification by modeling uncertain boundary in three-way decisions. IEEE Trans. Knowl. Data Eng. 29(7), 1438–1451 (2017)

    Article  Google Scholar 

  14. Yue, X., Chen, Y., Miao, D., Qian, J.: Tri-partition neighborhood covering reduction for robust classification. Int. J. Approx. Reason. 83, 371–384 (2017)

    Article  MathSciNet  Google Scholar 

  15. Yao, J., Azam, N.: Web-based medical decision support systems for three-way medical decision making with game-theoretic rough sets. IEEE Trans. Fuzzy Syst. 23(1), 3–15 (2015)

    Article  Google Scholar 

  16. Liu, G., Zhang, Y., Hu, Z., et al.: Complexity analysis of electroencephalogram dynamics in patients with parkinson’s disease. Parkinson’s Dis. 2017(6), Article no. 8701061 (2017)

    Google Scholar 

  17. Liu, D., Li, T., Liang, D.: Three-way decisions in dynamic decision-theoretic rough sets. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS (LNAI), vol. 8171, pp. 291–301. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41299-8_28

    Chapter  Google Scholar 

  18. Li, H., Zhou, X.: Risk decision making based on decision-theoretic rough set: a three-way view decision model. Int. J. Comput. Intell. Syst. 4(1), 1–11 (2011)

    Article  MathSciNet  Google Scholar 

  19. Li, H., Zhang, L.B.: Cost-sensitive sequential three-way decision modeling using a deep neural network. Int. J. Approx. Reason. 85(C), 68–78 (2017)

    Article  MathSciNet  Google Scholar 

  20. Li, H., Zhang, L.: Sequential three-way decision and granulation for cost-sensitive face recognition. Knowl. Based Syst. 91(C), 241–251 (2016)

    Article  Google Scholar 

  21. Huang, B., Guo, C., Li, H.: Hierarchical structures and uncertainty measures for intuitionistic fuzzy approximation space. Inf. Sci. 336(C), 92–114 (2015)

    Google Scholar 

  22. Ciucci, D., Dubois, D.: Three-valued logics, uncertainty management and rough sets. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XVII. LNCS, vol. 8375, pp. 1–32. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54756-0_1

    Chapter  MATH  Google Scholar 

  23. Yu, H., Chu, S., Yang, D.: Autonomous knowledge-oriented clustering using decision-theoretic rough set theory. Fundamenta Informaticae 115(2–3), 141–156 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Ren, F., Wang, L.: Sentimental analysis of text based on three-way decisions. J. Intell. Fuzzy Syst. 33(1), 245–254 (2017)

    Article  Google Scholar 

  25. Li, W., Huang, Z., Li, Q.: Three-way decisions based software defect prediction. Knowl. Based Syst. 91, 263–274 (2016)

    Article  Google Scholar 

  26. Li, H., Zhang, L., Huang, B.: Sequential three-way decision and granulation for cost-sensitive face recognition. Knowl. Based Syst. 91(C), 241–251 (2016)

    Article  Google Scholar 

  27. Lang, G., Miao, D., Cai, M.: Three-way decisions approaches to conflict analysis using decision-theoretic rough set theory. Inf. Sci. 406, 185–207 (2017)

    Article  Google Scholar 

  28. Yu, H., Su, T., Zeng, X.: A three-way decisions clustering algorithm for incomplete data. In: Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS (LNAI), vol. 8818, pp. 765–776. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11740-9_70

    Chapter  Google Scholar 

  29. Wu, W.Z., Qian, Y., Li, T.J.: On rule acquisition in incomplete multi-scale decision tables. Inf. Sci. 378(C), 282–302 (2017)

    Article  MathSciNet  Google Scholar 

  30. Nauman, M., Azam, N., Yao, J.T.: A three-way decision making approach to malware analysis using probabilistic rough sets. Inf. Sci. 374, 193–209 (2016)

    Article  Google Scholar 

  31. Peter, J.F., Ramanna, S.: Proximal three-way decisions: theory and applications in social networks. Knowl. Based Syst. 91, 4–15 (2016)

    Article  Google Scholar 

  32. Zhang, H., Min, F.: Three-way recommender systems based on random forests. Knowl. Based Syst. 91(C), 275–286 (2016)

    Article  Google Scholar 

  33. Li, P., Shang, L., Li, H.: A method to reduce boundary regions in three-way decision theory. In: Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS (LNAI), vol. 8818, pp. 834–843. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11740-9_76

    Chapter  Google Scholar 

  34. Zhou, Z.H., Li, M.: Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 17(11), 1529–1541 (2005)

    Article  Google Scholar 

  35. Chen, J., Zhao, S., Zhang, Y.: A multi-view decision model based on CCA. In: Ciucci, D., Wang, G., Mitra, S., Wu, W.-Z. (eds.) RSKT 2015. LNCS (LNAI), vol. 9436, pp. 266–274. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25754-9_24

    Chapter  Google Scholar 

  36. Chen, J., Zhang, Y., Zhao, S.: Multi-granular mining for boundary regions in three-way decision theory. Knowl. Based Syst. 91, 287–292 (2016)

    Article  Google Scholar 

  37. Zhang, Y., et al.: Research on cost-sensitive method for boundary region in three-way decision model. In: Flores, V. (ed.) IJCRS 2016. LNCS (LNAI), vol. 9920, pp. 261–271. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47160-0_24

    Chapter  Google Scholar 

  38. Zhang, Y., Xing, H., Zou, H., Zhao, S., Wang, X.: A three-way decisions model based on constructive covering algorithm. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS (LNAI), vol. 8171, pp. 346–353. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41299-8_33

    Chapter  Google Scholar 

  39. UCI machine learning repository. http://archive.ics.uci.edu/ml/

  40. Zhang, Y., Zou, H., Chen, X., et al.: Cost-sensitive three-way decisions model based on CCA. J. Nanjing Univ. (2015)

    Google Scholar 

  41. Zhang, Y., Zou, H., Chen, X., Wang, X., Tang, X., Zhao, S.: Cost-sensitive three-way decisions model based on CCA. In: Cornelis, C., Kryszkiewicz, M., Ślęzak, D., Ruiz, E.M., Bello, R., Shang, L. (eds.) RSCTC 2014. LNCS (LNAI), vol. 8536, pp. 172–180. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08644-6_18

    Chapter  Google Scholar 

  42. Lee, Z.J., Lu, T.H., Huang, H.: A novel algorithm applied to filter spam e-mails for iPhone. Vietnam J. Comput. Sci. 2(3), 143–148 (2015)

    Article  Google Scholar 

  43. Elssied, N.O.F., lbrahim, O., Osman, A.H.: Enhancement of spam detection mechanism based on hybrid k-mean clustering and support vector machine. Soft Comput. 19, 3237–3248 (2015)

    Article  Google Scholar 

  44. Devi, S.G., Sabrigiriraj, M.: Swarm intelligent based online feature selection (OFS) and weighted entropy frequent pattern mining (WEFPM) algorithm for big data analysis. Cluster Comput. 1, 1–13 (2017)

    Google Scholar 

  45. Wu, X., Fan, W., Peng, J.: Iterative sampling based frequent itemset mining for big data. Int. J. Mach. Learn. Cybern. 1(6), 1–8 (2015)

    Google Scholar 

  46. Narayana, G.S., Vasumathi, D.: An attributes similarity-based K-medoids clustering technique in data mining. Arab. J. Sci. Eng. 1, 1–14 (2017)

    Google Scholar 

  47. Zainudin, M., Cheriet, M.: Feature selection optimization using hybrid relief-f with self-adaptive differential evolution. Int. J. Intell. Eng. Syst. 10(2), 21–29 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 61602003, 61673020, and 61402006), National High Technology Research and Development Program (863 Plan)(Grant #2015A-A124102), Innovation Zone Project Program for Science and Technology of China’s National Defense (Grant No. 2017-0001-863015-0009), the Provincial Natural Science Foundation of Anhui Province (Grant #1708085QF156), the Natural Science Foundation of Jiangsu Province (BK20170809), the China Postdoctoral Science Foundation (Grant No. 2018M632304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J. et al. (2018). A Method for Boundary Processing in Three-Way Decisions Based on Hierarchical Feature Representation. In: Nguyen, H., Ha, QT., Li, T., Przybyła-Kasperek, M. (eds) Rough Sets. IJCRS 2018. Lecture Notes in Computer Science(), vol 11103. Springer, Cham. https://doi.org/10.1007/978-3-319-99368-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99368-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99367-6

  • Online ISBN: 978-3-319-99368-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics