Endocrine Disrupting Chemicals and Breast Cancer: The Saga of Bisphenol A

Part of the Cancer Drug Discovery and Development book series (CDD&D)


Breast cancer results from time-related complex interactions between internal and external factors. In addition to endogenous estrogens, which play an undisputed role in breast tumorigenesis, exogenous compounds which mimic the actions of estrogen and are referred to as endocrine disruptors (EDCs) or xenoestrogens have strong impacts on breast development during the perinatal period and on carcinogenesis in adults. EDCs include natural compounds such as phytoestrogens and mycoestrogens, as well as numerous man-made chemicals which are widely used by the agriculture, chemical, food, and cosmetic industries, and are included in multiple everyday consumer products. This chapter reviews the evidence on human exposure to the EDCs, their in vitro and in vivo effects on breast cancer, and their proposed mechanisms of action. Emphasis has been placed on bisphenol A (BPA), a prototypical xenoestrogen whose adverse health effects have attracted considerable attention by scientists, industry, regulatory agencies, and the public at large. The disparate positions on health hazards by BPA, which have been undertaken by the chemical and food industries, environmental advocacy groups, health organizations, and regulatory agencies, are reviewed and criticized.


Estrogen Estrogen receptors (ER) Xenoestrogens Endocrine disruptors (EDC) Breast cancer risks Bisphenol A (BPA) Phytoestrogens Mycoestrogens Breast carcinogenesis Mechanism of action Health hazards 


  1. 1.
    Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, Woodruff TJ, vom Saal FS (2012) Endocrine-disrupting chemicals and public health protection: a statement of principles from the Endocrine Society. Endocrinology 153(9):4097–4110CrossRefGoogle Scholar
  2. 2.
    Giulivo M, Lopez de Alda M, Capri E, Barcelo D (2016) Human exposure to endocrine disrupting compounds: their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environ Res 151:251–264CrossRefGoogle Scholar
  3. 3.
    Coyle YM (2004) The effect of environment on breast cancer risk. Breast Cancer Res Treat 84(3):273–288CrossRefGoogle Scholar
  4. 4.
    Hortobagyi GN, de la Garza SJ, Pritchard K, Amadori D, Haidinger R, Hudis CA, Khaled H, Liu MC, Martin M, Namer M, O’Shaughnessy JA, Shen ZZ, Albain KS (2005) The global breast cancer burden: variations in epidemiology and survival. Clin Breast Cancer 6(5):391–401CrossRefGoogle Scholar
  5. 5.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85CrossRefGoogle Scholar
  6. 6.
    Rudel RA, Attfield KR, Schifano JN, Brody JG (2007) Chemicals causing mammary gland tumors in animals signal new directions for epidemiology, chemicals testing, and risk assessment for breast cancer prevention. Cancer 109(12 Suppl):2635–2666CrossRefGoogle Scholar
  7. 7.
    Mense SM, Hei TK, Ganju RK, Bhat HK (2008) Phytoestrogens and breast cancer prevention: possible mechanisms of action. Environ Health Perspect 116(4):426–433CrossRefGoogle Scholar
  8. 8.
    Bilal I, Chowdhury A, Davidson J, Whitehead S (2014) Phytoestrogens and prevention of breast cancer: the contentious debate. World J Clin Oncol 5(4):705–712CrossRefGoogle Scholar
  9. 9.
    Zhao E, Mu Q (2011) Phytoestrogen biological actions on Mammalian reproductive system and cancer growth. Sci Pharm 79(1):1–20CrossRefGoogle Scholar
  10. 10.
    Bandera EV, Chandran U, Buckley B, Lin Y, Isukapalli S, Marshall I, King M, Zarbl H (2011) Urinary mycoestrogens, body size and breast development in New Jersey girls. Sci Total Environ 409(24):5221–5227CrossRefGoogle Scholar
  11. 11.
    Sondergaard TE, Klitgaard LG, Purup S, Kobayashi H, Giese H, Sorensen JL (2012) Estrogenic effects of fusarielins in human breast cancer cell lines. Toxicol Lett 214(3):259–262CrossRefGoogle Scholar
  12. 12.
    Yuri T, Tsukamoto R, Miki K, Uehara N, Matsuoka Y, Tsubura A (2006) Biphasic effects of zeranol on the growth of estrogen receptor-positive human breast carcinoma cells. Oncol Rep 16(6):1307–1312PubMedGoogle Scholar
  13. 13.
    Marselos M, Tomatis L (1992) Diethylstilboestrol: I, pharmacology, toxicology and carcinogenicity in humans. Eur J Cancer 28A(6–7):1182–1189CrossRefGoogle Scholar
  14. 14.
    Marselos M, Tomatis L (1992) Diethylstilboestrol: II, pharmacology, toxicology and carcinogenicity in experimental animals. Eur J Cancer 29A(1):149–155CrossRefGoogle Scholar
  15. 15.
    Hilakivi-Clarke L (2014) Maternal exposure to diethylstilbestrol during pregnancy and increased breast cancer risk in daughters. Breast Cancer Res 16(2):208CrossRefGoogle Scholar
  16. 16.
    Fairbairn DJ, Karpuzcu ME, Arnold WA, Barber BL, Kaufenberg EF, Koskinen WC, Novak PJ, Rice PJ, Swackhamer DL (2016) Sources and transport of contaminants of emerging concern: a two-year study of occurrence and spatiotemporal variation in a mixed land use watershed. Sci Total Environ 551–552:605–613CrossRefGoogle Scholar
  17. 17.
    Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93(9):2116–2123CrossRefGoogle Scholar
  18. 18.
    Nicolopoulou-Stamati P, Hens L, Sasco AJ (2015) Cosmetics as endocrine disruptors: are they a health risk? Rev Endocr Metab Disord 16(4):373–383CrossRefGoogle Scholar
  19. 19.
    Charles AK, Darbre PD (2013) Combinations of parabens at concentrations measured in human breast tissue can increase proliferation of MCF-7 human breast cancer cells. J Appl Toxicol 33(5):390–398CrossRefGoogle Scholar
  20. 20.
    Sonthithai P, Suriyo T, Thiantanawat A, Watcharasit P, Ruchirawat M, Satayavivad J (2016) Perfluorinated chemicals, PFOS and PFOA, enhance the estrogenic effects of 17beta-estradiol in T47D human breast cancer cells. J Appl Toxicol 36(6):790–801CrossRefGoogle Scholar
  21. 21.
    Lee HR, Hwang KA, Nam KH, Kim HC, Choi KC (2014) Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem Res Toxicol 27(5):834–842CrossRefGoogle Scholar
  22. 22.
    Amadasi A, Mozzarelli A, Meda C, Maggi A, Cozzini P (2009) Identification of xenoestrogens in food additives by an integrated in silico and in vitro approach. Chem Res Toxicol 22(1):52–63CrossRefGoogle Scholar
  23. 23.
    ter Veld MG, Schouten B, Louisse J, van Es DS, van der Saag PT, Rietjens IM, Murk AJ (2006) Estrogenic potency of food-packaging-associated plasticizers and antioxidants as detected in ERalpha and ERbeta reporter gene cell lines. J Agric Food Chem 54(12):4407–4416CrossRefGoogle Scholar
  24. 24.
    Lee SW, Kim SG, Park YW, Kweon H, Kim JY, Rotaru H (2013) Cisplatin and 4-hexylresorcinol synergise to decrease metastasis and increase survival rate in an oral mucosal melanoma xenograft model: a preliminary study. Tumour Biol 34(3):1595–1603CrossRefGoogle Scholar
  25. 25.
    Gray JM, Rasanayagam S, Engel C, Rizzo J (2017) State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health 16(1):94CrossRefGoogle Scholar
  26. 26.
    Moysich KB, Menezes RJ, Baker JA, Falkner KL (2002) Environmental exposure to polychlorinated biphenyls and breast cancer risk. Rev Environ Health 17(4):263–277CrossRefGoogle Scholar
  27. 27.
    Crews D, Bergeron JM, McLachlan JA (1995) The role of estrogen in turtle sex determination and the effect of PCBs. Environ Health Perspect 103(Suppl 7):73–77CrossRefGoogle Scholar
  28. 28.
    Bergeron JM, Crews D, McLachlan JA (1994) PCBs as environmental estrogens: turtle sex determination as a biomarker of environmental contamination. Environ Health Perspect 102(9):780–781CrossRefGoogle Scholar
  29. 29.
    Liu S, Li S, Du Y (2010) Polychlorinated biphenyls (PCBs) enhance metastatic properties of breast cancer cells by activating rho-associated kinase (ROCK). PLoS One 5(6):e11272CrossRefGoogle Scholar
  30. 30.
    Morgan M, Deoraj A, Felty Q, Roy D (2017) Environmental estrogen-like endocrine disrupting chemicals and breast cancer. Mol Cell Endocrinol 457:89–102CrossRefGoogle Scholar
  31. 31.
    Zani C, Ceretti E, Covolo L, Donato F (2017) Do polychlorinated biphenyls cause cancer? A systematic review and meta-analysis of epidemiological studies on risk of cutaneous melanoma and non-Hodgkin lymphoma. Chemosphere 183:97–106CrossRefGoogle Scholar
  32. 32.
    Powell JB, Goode GD, Eltom SE (2013) The aryl hydrocarbon receptor: a target for breast cancer therapy. J Cancer Ther 4(7):1177–1186CrossRefGoogle Scholar
  33. 33.
    Carson R (1962) Silent Spring. Houghton Mifflin, BostonGoogle Scholar
  34. 34.
    Gray J, Evans N, Taylor B, Rizzo J, Walker M (2009) State of the evidence: the connection between breast cancer and the environment. Int J Occup Environ Health 15(1):43–78CrossRefGoogle Scholar
  35. 35.
    Beard J (2006) DDT and human health. Sci Total Environ 355(1–3):78–89CrossRefGoogle Scholar
  36. 36.
    Mathur V, Bhatnagar P, Sharma RG, Acharya V, Sexana R (2002) Breast cancer incidence and exposure to pesticides among women originating from Jaipur. Environ Int 28(5):331–336CrossRefGoogle Scholar
  37. 37.
    Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D (1993) Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132(6):2279–2286CrossRefGoogle Scholar
  38. 38.
    Brotons JA, Olea-Serrano MF, Villalobos M, Pedraza V, Olea N (1995) Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect 103(6):608–612CrossRefGoogle Scholar
  39. 39.
    Olea N, Pulgar R, Perez P, Olea-Serrano F, Rivas A, Novillo-Fertrell A, Pedraza V, Soto AM, Sonnenschein C (1996) Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect 104(3):298–305CrossRefGoogle Scholar
  40. 40.
    Steinmetz R, Brown NG, Allen DL, Bigsby RM, Ben-Jonathan N (1997) The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo. Endocrinology 138(5):1780–1786CrossRefGoogle Scholar
  41. 41.
    Ben-Jonathan N, Steinmetz R (1998) Xenoestrogens: the emerging story of bisphenol A. Trends Endocrinol Metab 9(3):124–128CrossRefGoogle Scholar
  42. 42.
    Steinmetz R, Mitchner NA, Grant A, Allen DL, Bigsby RM, Ben-Jonathan N (1998) The xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract. Endocrinology 139(6):2741–2747CrossRefGoogle Scholar
  43. 43.
    Ben-Jonathan N, Hugo ER, Brandebourg TD (2009) Effects of bisphenol A on adipokine release from human adipose tissue: implications for the metabolic syndrome. Mol Cell Endocrinol 304(1–2):49–54CrossRefGoogle Scholar
  44. 44.
    Corrales J, Kristofco LA, Steele WB, Yates BS, Breed CS, Williams ES, Brooks BW (2015) Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose Response 13(3):1–9CrossRefGoogle Scholar
  45. 45.
    Wang L, Xue J, Kannan K (2015) Widespread occurrence and accumulation of bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE) and their derivatives in human blood and adipose fat. Environ Sci Technol 49(5):3150–3157CrossRefGoogle Scholar
  46. 46.
    Ginsberg G, Rice DC (2009) Does rapid metabolism ensure negligible risk from bisphenol A? Environ Health Perspect 117(11):1639–1643CrossRefGoogle Scholar
  47. 47.
    Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y (2002) Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 17(11):2839–2841CrossRefGoogle Scholar
  48. 48.
    Soto AM, Maffini MV, Schaeberle CM, Sonnenschein C (2006) Strengths and weaknesses of in vitro assays for estrogenic and androgenic activity. Best Pract Res Clin Endocrinol Metab 20(1):15–33CrossRefGoogle Scholar
  49. 49.
    Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33(3):378–455CrossRefGoogle Scholar
  50. 50.
    Vandenberg LN, Ehrlich S, Belcher SM, Ben-Jonathan N, Dolinoy DC, Hugo ER, Hunt PA, Newbold RR, Rubin BS, Saili KS, Soto AM, Wang HS, vom Saal FS (2013) Low dose effects of bisphenol A. Endocr Disruptors 1(1):e1-1–e1-20CrossRefGoogle Scholar
  51. 51.
    Idelman G, Jacobson EM, Tuttle TR, Ben-Jonathan N (2011) Lactogens and estrogens in breast cancer chemoresistance. Expert Rev Endocrinol Metab 6(3):411–422CrossRefGoogle Scholar
  52. 52.
    Wang Z, Liu H, Liu S (2017) Low-dose bisphenol A exposure: a seemingly instigating carcinogenic effect on breast cancer. Adv Sci (Weinh) 4(2):1600248CrossRefGoogle Scholar
  53. 53.
    LaPensee EW, LaPensee CR, Fox S, Schwemberger S, Afton S, Ben-Jonathan N (2010) Bisphenol A and estradiol are equipotent in antagonizing cisplatin-induced cytotoxicity in breast cancer cells. Cancer Lett 290(2):167–173CrossRefGoogle Scholar
  54. 54.
    LaPensee EW, Tuttle TR, Fox SR, Ben-Jonathan N (2009) Bisphenol A at low nanomolar doses confers chemoresistance in estrogen receptor-alpha-positive and -negative breast cancer cells. Environ Health Perspect 117(2):175–180CrossRefGoogle Scholar
  55. 55.
    LaPensee EW, Ben-Jonathan N (2010) Novel roles of prolactin and estrogens in breast cancer: resistance to chemotherapy. Endocr Relat Cancer 17(2):R91–R107CrossRefGoogle Scholar
  56. 56.
    Delgado M, Ribeiro-Varandas E (2015) Bisphenol A at the reference level counteracts doxorubicin transcriptional effects on cancer related genes in HT29 cells. Toxicol In Vitro 29(8):2009–2014CrossRefGoogle Scholar
  57. 57.
    Tharp AP, Maffini MV, Hunt PA, VandeVoort CA, Sonnenschein C, Soto AM (2012) Bisphenol A alters the development of the rhesus monkey mammary gland. Proc Natl Acad Sci U S A 109(21):8190–8195CrossRefGoogle Scholar
  58. 58.
    Jenkins S, Wang J, Eltoum I, Desmond R, Lamartiniere CA (2011) Chronic oral exposure to bisphenol A results in a nonmonotonic dose response in mammary carcinogenesis and metastasis in MMTV-erbB2 mice. Environ Health Perspect 119(11):1604–1609CrossRefGoogle Scholar
  59. 59.
    Dhimolea E, Wadia PR, Murray TJ, Settles ML, Treitman JD, Sonnenschein C, Shioda T, Soto AM (2014) Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development. PLoS One 9(7):e99800CrossRefGoogle Scholar
  60. 60.
    Jorgensen EM, Alderman MH III, Taylor HS (2016) Preferential epigenetic programming of estrogen response after in utero xenoestrogen (bisphenol-A) exposure. FASEB J 30(9):3194–3201CrossRefGoogle Scholar
  61. 61.
    Fajas L (2003) Adipogenesis: a cross-talk between cell proliferation and cell differentiation. Ann Med 35(2):79–85CrossRefGoogle Scholar
  62. 62.
    Feng Y, Jiao Z, Shi J, Li M, Guo Q, Shao B (2016) Effects of bisphenol analogues on steroidogenic gene expression and hormone synthesis in H295R cells. Chemosphere 147:9–19CrossRefGoogle Scholar
  63. 63.
    McRobb FM, Kufareva I, Abagyan R (2014) In silico identification and pharmacological evaluation of novel endocrine disrupting chemicals that act via the ligand-binding domain of the estrogen receptor alpha. Toxicol Sci 141(1):188–197CrossRefGoogle Scholar
  64. 64.
    Cao H, Wang F, Liang Y, Wang H, Zhang A, Song M (2017) Experimental and computational insights on the recognition mechanism between the estrogen receptor alpha with bisphenol compounds. Arch Toxicol 91(12):3897–3912CrossRefGoogle Scholar
  65. 65.
    Castillo SR, Gomez R, Perez SE (2016) Bisphenol A induces migration through a GPER-, FAK-, Src-, and ERK2-dependent pathway in MDA-MB-231 breast cancer cells. Chem Res Toxicol 29(3):285–295CrossRefGoogle Scholar
  66. 66.
    Acconcia F, Pallottini V, Marino M (2015) Molecular mechanisms of action of BPA. Dose Response 13(4):1–9CrossRefGoogle Scholar
  67. 67.
    Levin ER (2009) Plasma membrane estrogen receptors. Trends Endocrinol Metab 20(10):477–482CrossRefGoogle Scholar
  68. 68.
    Song RX, Santen RJ (2006) Membrane initiated estrogen signaling in breast cancer. Biol Reprod 75(1):9–16CrossRefGoogle Scholar
  69. 69.
    Albini A, Rosano C, Angelini G, Amaro A, Esposito AI, Maramotti S, Noonan DM, Pfeffer U (2014) Exogenous hormonal regulation in breast cancer cells by phytoestrogens and endocrine disruptors. Curr Med Chem 21(9):1129–1145CrossRefGoogle Scholar
  70. 70.
    Barton M, Filardo EJ, Lolait SJ, Thomas P, Maggiolini M, Prossnitz ER (2018) Twenty years of the G protein-coupled estrogen receptor GPER: historical and personal perspectives. J Steroid Biochem Mol Biol 176:4–15CrossRefGoogle Scholar
  71. 71.
    Pupo M, Vivacqua A, Perrotta I, Pisano A, Aquila S, Abonante S, Gasperi-Campani A, Pezzi V, Maggiolini M (2013) The nuclear localization signal is required for nuclear GPER translocation and function in breast Cancer-Associated Fibroblasts (CAFs). Mol Cell Endocrinol 376(1–2):23–32CrossRefGoogle Scholar
  72. 72.
    Misawa A, Inoue S (2015) Estrogen-related receptors in breast cancer and prostate cancer. Front Endocrinol (Lausanne) 6:83–90Google Scholar
  73. 73.
    Ariazi EA, Clark GM, Mertz JE (2002) Estrogen-related receptor alpha and estrogen-related receptor gamma associate with unfavorable and favorable biomarkers, respectively, in human breast cancer. Cancer Res 62(22):6510–6518PubMedGoogle Scholar
  74. 74.
    Matsushima A, Kakuta Y, Teramoto T, Koshiba T, Liu X, Okada H, Tokunaga T, Kawabata S, Kimura M, Shimohigashi Y (2007) Structural evidence for endocrine disruptor bisphenol A binding to human nuclear receptor ERR gamma. J Biochem 142(4):517–524CrossRefGoogle Scholar
  75. 75.
    Zhang XL, Liu N, Weng SF, Wang HS (2016) Bisphenol A increases the migration and invasion of triple-negative breast cancer cells via oestrogen-related receptor gamma. Basic Clin Pharmacol Toxicol 119(4):389–395CrossRefGoogle Scholar
  76. 76.
    Song H, Zhang T, Yang P, Li M, Yang Y, Wang Y, Du J, Pan K, Zhang K (2015) Low doses of bisphenol A stimulate the proliferation of breast cancer cells via ERK1/2/ERRgamma signals. Toxicol In Vitro 30(1 Pt B):521–528CrossRefGoogle Scholar
  77. 77.
    Molina-Molina JM, Amaya E, Grimaldi M, Saenz JM, Real M, Fernandez MF, Balaguer P, Olea N (2013) In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol Appl Pharmacol 272(1):127–136CrossRefGoogle Scholar
  78. 78.
    Kitamura S, Suzuki T, Sanoh S, Kohta R, Jinno N, Sugihara K, Yoshihara S, Fujimoto N, Watanabe H, Ohta S (2005) Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicol Sci 84(2):249–259CrossRefGoogle Scholar
  79. 79.
    Tabb MM, Blumberg B (2006) New modes of action for endocrine-disrupting chemicals. Mol Endocrinol 20(3):475–482CrossRefGoogle Scholar
  80. 80.
    Rochester JR, Bolden AL (2015) Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect 123(7):643–650CrossRefGoogle Scholar
  81. 81.
    Jin H, Zhu J, Chen Z, Hong Y, Cai Z (2017) Occurrence and partitioning of bisphenol analogues in adults’ blood from China. Environ Sci Technol 51(24):14025–14032CrossRefGoogle Scholar
  82. 82.
    Liao C, Liu F, Alomirah H, Loi VD, Mohd MA, Moon HB, Nakata H, Kannan K (2012) Bisphenol S in urine from the United States and seven Asian countries: occurrence and human exposures. Environ Sci Technol 46(12):6860–6866CrossRefGoogle Scholar
  83. 83.
    Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30(4):293–342CrossRefGoogle Scholar
  84. 84.
    Long X, Steinmetz R, Ben-Jonathan N, Caperell-Grant A, Young PC, Nephew KP, Bigsby RM (2000) Strain differences in vaginal responses to the xenoestrogen bisphenol A. Environ Health Perspect 108(3):243–247CrossRefGoogle Scholar
  85. 85.
    Khurana S, Ranmal S, Ben-Jonathan N (2000) Exposure of newborn male and female rats to environmental estrogens: delayed and sustained hyperprolactinemia and alterations in estrogen receptor expression. Endocrinology 141(12):4512–4517CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Cancer BiologyUniversity of CincinnatiCincinnatiUSA

Personalised recommendations