Skip to main content

Molecular Mechanisms of Endocrine Resistance

  • Chapter
  • First Online:

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Estrogen receptor-positive (ER+) breast cancer is the most common subtype of breast cancer. Endocrine therapy targeting the ER pathway is effective, yet endocrine resistance is prevalent and remains a clinical challenge. The mechanisms underlying endocrine resistance are multifaceted and are likely to continue evolving over time in response to various endocrine regimens. The expression of ER in most endocrine-resistant tumors underscores ER’s continuing role, although altered, often via crosstalk with hyperactive growth factor receptor and intracellular kinase signaling pathways. These interactions can alter ER’s sensitivity to various endocrine agents and lead to the activation of distinct transcriptional programs that provide proliferation and survival signaling to escape endocrine therapy. Additional molecular determinants inflicting ER transcriptional reprogramming to promote endocrine resistance include alterations of ER coregulators and pioneer factors, and genetic aberrations of ER itself. Recent advances in our understanding of the mechanisms of endocrine resistance, mostly provided by large-scale sequencing studies, further establish the roles of epigenetic alterations, the DNA damage response, the tumor microenvironment, and the immune response in promoting the endocrine-resistant ER+ disease. Progress has been made in translating several of these findings into effective new targeted therapies, such as inhibitors targeting the key signaling node mTOR and the cyclin-dependent kinases CDK4 and CDK6. However, considerable challenges remain in (1) developing new tailored treatment strategies with enhanced efficacy and reduced toxicity, (2) improving the patient selection approaches for these new treatments, and (3) advancing our understanding of how to harness the recent developments in immunotherapy to support other therapeutic strategies to prevent or overcome endocrine resistance and disease progression. It is our hope that continuing translational research will unveil more converging targets and pathways associated with altered ER transcriptional reprogramming, which can be therapeutically exploited to prevent and/or reverse endocrine resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Parise CA, Bauer KR, Brown MM, Caggiano V (2009) Breast cancer subtypes as defined by the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) among women with invasive breast cancer in California, 1999-2004. Breast J 15(6):593–602. https://doi.org/10.1111/j.1524-4741.2009.00822.x

    Article  PubMed  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. https://doi.org/10.1038/35021093

    Article  CAS  PubMed  Google Scholar 

  3. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874. https://doi.org/10.1073/pnas.191367098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767. https://doi.org/10.1172/JCI45014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kreike B, van Kouwenhove M, Horlings H, Weigelt B, Peterse H, Bartelink H, van de Vijver MJ (2007) Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 9(5):R65. https://doi.org/10.1186/bcr1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhalla N, Zeng T, Ma K, Chan SK, Griffith M, Moradian A, Cheng SW, Morin GB, Watson P, Gelmon K, Chia S, Chin SF, Curtis C, Rueda OM, Pharoah PD, Damaraju S, Mackey J, Hoon K, Harkins T, Tadigotla V, Sigaroudinia M, Gascard P, Tlsty T, Costello JF, Meyer IM, Eaves CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra MA, Aparicio S (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486(7403):395–399. https://doi.org/10.1038/nature10933

    Article  CAS  PubMed  Google Scholar 

  7. Clark GM, Osborne CK, McGuire WL (1984) Correlations between estrogen receptor, progesterone receptor, and patient characteristics in human breast cancer. J Clin Oncol 2(10):1102–1109. https://doi.org/10.1200/JCO.1984.2.10.1102

    Article  CAS  PubMed  Google Scholar 

  8. Huang B, Warner M, Gustafsson JA (2015) Estrogen receptors in breast carcinogenesis and endocrine therapy. Mol Cell Endocrinol 418(Pt 3):240–244. https://doi.org/10.1016/j.mce.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  9. Olefsky JM (2001) Nuclear receptor minireview series. J Biol Chem 276(40):36863–36864. https://doi.org/10.1074/jbc.R100047200

    Article  CAS  PubMed  Google Scholar 

  10. Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29(14):2905–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Osborne CK, Schiff R, Fuqua SA, Shou J (2001) Estrogen receptor: current understanding of its activation and modulation. Clin Cancer Res 7(12 Suppl):4338s–4342s discussion 4411s–4412s

    CAS  PubMed  Google Scholar 

  12. McKenna NJ, Lanz RB, O’Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20(3):321–344. https://doi.org/10.1210/edrv.20.3.0366

    Article  CAS  PubMed  Google Scholar 

  13. Lupien M, Meyer CA, Bailey ST, Eeckhoute J, Cook J, Westerling T, Zhang X, Carroll JS, Rhodes DR, Liu XS, Brown M (2010) Growth factor stimulation induces a distinct ER(alpha) cistrome underlying breast cancer endocrine resistance. Genes Dev 24(19):2219–2227. https://doi.org/10.1101/gad.1944810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, Schiltz RL, Miranda TB, Sung MH, Trump S, Lightman SL, Vinson C, Stamatoyannopoulos JA, Hager GL (2011) Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell 43(1):145–155. https://doi.org/10.1016/j.molcel.2011.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nemere I, Pietras RJ, Blackmore PF (2003) Membrane receptors for steroid hormones: signal transduction and physiological significance. J Cell Biochem 88(3):438–445. https://doi.org/10.1002/jcb.10409

    Article  CAS  PubMed  Google Scholar 

  16. Levin ER (2012) Elusive extranuclear estrogen receptors in breast cancer. Clin Cancer Res 18(1):6–8. https://doi.org/10.1158/1078-0432.CCR-11-2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boonyaratanakornkit V, Hamilton N, Marquez-Garban DC, Pateetin P, McGowan EM, Pietras RJ (2018) Extranuclear signaling by sex steroid receptors and clinical implications in breast cancer. Mol Cell Endocrinol 466:51–72. https://doi.org/10.1016/j.mce.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  18. Levin ER (2018) Membrane estrogen receptors signal to determine transcription factor function. Steroids 132:1–4. https://doi.org/10.1016/j.steroids.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  19. Clarke R, Tyson JJ, Dixon JM (2015) Endocrine resistance in breast cancer--an overview and update. Mol Cell Endocrinol 418(Pt 3):220–234. https://doi.org/10.1016/j.mce.2015.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Osborne CK, Schiff R (2011) Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 62:233–247. https://doi.org/10.1146/annurev-med-070909-182917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med 339(22):1609–1618. https://doi.org/10.1056/NEJM199811263392207

    Article  CAS  PubMed  Google Scholar 

  22. Ring A, Dowsett M (2004) Mechanisms of tamoxifen resistance. Endocr Relat Cancer 11(4):643–658. https://doi.org/10.1677/erc.1.00776

    Article  CAS  PubMed  Google Scholar 

  23. Early Breast Cancer Trialists’ Collaborative Group (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717. https://doi.org/10.1016/S0140-6736(05)66544-0

    Article  CAS  Google Scholar 

  24. Early Breast Cancer Trialists’ Collaborative Group (2015) Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet 386(10001):1341–1352. https://doi.org/10.1016/S0140-6736(15)61074-1

    Article  CAS  Google Scholar 

  25. Rugo HS, Rumble RB, Macrae E, Barton DL, Connolly HK, Dickler MN, Fallowfield L, Fowble B, Ingle JN, Jahanzeb M, Johnston SR, Korde LA, Khatcheressian JL, Mehta RS, Muss HB, Burstein HJ (2016) Endocrine therapy for hormone receptor-positive metastatic breast cancer: American Society of Clinical Oncology guideline. J Clin Oncol 34(25):3069–3103. https://doi.org/10.1200/JCO.2016.67.1487

    Article  CAS  PubMed  Google Scholar 

  26. Brodie A, Sabnis G (2011) Adaptive changes result in activation of alternate signaling pathways and acquisition of resistance to aromatase inhibitors. Clin Cancer Res 17(13):4208–4213. https://doi.org/10.1158/1078-0432.CCR-10-2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robertson JF, Lindemann J, Garnett S, Anderson E, Nicholson RI, Kuter I, Gee JM (2014) A good drug made better: the fulvestrant dose-response story. Clin Breast Cancer 14(6):381–389. https://doi.org/10.1016/j.clbc.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  28. Robertson JFR, Bondarenko IM, Trishkina E, Dvorkin M, Panasci L, Manikhas A, Shparyk Y, Cardona-Huerta S, Cheung KL, Philco-Salas MJ, Ruiz-Borrego M, Shao Z, Noguchi S, Rowbottom J, Stuart M, Grinsted LM, Fazal M, Ellis MJ (2016) Fulvestrant 500 mg versus anastrozole 1 mg for hormone receptor-positive advanced breast cancer (FALCON): an international, randomised, double-blind, phase 3 trial. Lancet 388(10063):2997–3005. https://doi.org/10.1016/S0140-6736(16)32389-3

    Article  CAS  PubMed  Google Scholar 

  29. Wardell SE, Nelson ER, Chao CA, Alley HM, McDonnell DP (2015) Evaluation of the pharmacological activities of RAD1901, a selective estrogen receptor degrader. Endocr Relat Cancer 22(5):713–724. https://doi.org/10.1530/ERC-15-0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McDonnell DP, Wardell SE, Norris JD (2015) Oral selective estrogen receptor downregulators (SERDs), a breakthrough endocrine therapy for breast cancer. J Med Chem 58(12):4883–4887. https://doi.org/10.1021/acs.jmedchem.5b00760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang D, Yang F, Wang Y, Guan X (2017) Mechanisms of resistance to selective estrogen receptor down-regulator in metastatic breast cancer. Biochim Biophys Acta 1868(1):148–156. https://doi.org/10.1016/j.bbcan.2017.03.008

    Article  CAS  Google Scholar 

  32. Zardavas D, Irrthum A, Swanton C, Piccart M (2015) Clinical management of breast cancer heterogeneity. Nat Rev Clin Oncol 12(7):381–394. https://doi.org/10.1038/nrclinonc.2015.73

    Article  CAS  PubMed  Google Scholar 

  33. Hoefnagel LD, Moelans CB, Meijer SL, van Slooten HJ, Wesseling P, Wesseling J, Westenend PJ, Bart J, Seldenrijk CA, Nagtegaal ID, Oudejans J, van der Valk P, van Gils CH, van der Wall E, van Diest PJ (2012) Prognostic value of estrogen receptor alpha and progesterone receptor conversion in distant breast cancer metastases. Cancer 118(20):4929–4935. https://doi.org/10.1002/cncr.27518

    Article  CAS  PubMed  Google Scholar 

  34. Dodwell D, Wardley A, Johnston S (2006) Postmenopausal advanced breast cancer: options for therapy after tamoxifen and aromatase inhibitors. Breast 15(5):584–594. https://doi.org/10.1016/j.breast.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  35. Robertson JF, Osborne CK, Howell A, Jones SE, Mauriac L, Ellis M, Kleeberg UR, Come SE, Vergote I, Gertler S, Buzdar A, Webster A, Morris C (2003) Fulvestrant versus anastrozole for the treatment of advanced breast carcinoma in postmenopausal women: a prospective combined analysis of two multicenter trials. Cancer 98(2):229–238. https://doi.org/10.1002/cncr.11468

    Article  CAS  PubMed  Google Scholar 

  36. Schiff R, Massarweh S, Shou J, Osborne CK (2003) Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clin Cancer Res 9(1 Pt 2):447S–454S

    CAS  PubMed  Google Scholar 

  37. Spears M, Bartlett J (2009) The potential role of estrogen receptors and the SRC family as targets for the treatment of breast cancer. Expert Opin Ther Targets 13(6):665–674. https://doi.org/10.1517/14728220902911509

    Article  CAS  PubMed  Google Scholar 

  38. Arpino G, Wiechmann L, Osborne CK, Schiff R (2008) Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29(2):217–233. https://doi.org/10.1210/er.2006-0045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gutierrez MC, Detre S, Johnston S, Mohsin SK, Shou J, Allred DC, Schiff R, Osborne CK, Dowsett M (2005) Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol 23(11):2469–2476. https://doi.org/10.1200/JCO.2005.01.172

    Article  CAS  PubMed  Google Scholar 

  40. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R (2004) Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96(12):926–935

    Article  CAS  PubMed  Google Scholar 

  41. Osborne CK, Shou J, Massarweh S, Schiff R (2005) Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res 11(2 Pt 2):865s–870s

    CAS  PubMed  Google Scholar 

  42. Giuliano M, Trivedi MV, Schiff R (2013) Bidirectional crosstalk between the estrogen receptor and human epidermal growth factor receptor 2 signaling pathways in breast cancer: molecular basis and clinical implications. Breast Care 8(4):256–262. https://doi.org/10.1159/000354253

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schettini F, Buono G, Cardalesi C, Desideri I, De Placido S, Del Mastro L (2016) Hormone receptor/human epidermal growth factor receptor 2-positive breast cancer: where we are now and where we are going. Cancer Treat Rev 46:20–26. https://doi.org/10.1016/j.ctrv.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  44. De Laurentiis M, Arpino G, Massarelli E, Ruggiero A, Carlomagno C, Ciardiello F, Tortora G, D’Agostino D, Caputo F, Cancello G, Montagna E, Malorni L, Zinno L, Lauria R, Bianco AR, De Placido S (2005) A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin Cancer Res 11(13):4741–4748. https://doi.org/10.1158/1078-0432.CCR-04-2569

    Article  PubMed  Google Scholar 

  45. Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S, Weiss H, Rimawi M, Schiff R (2008) Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 68(3):826–833. https://doi.org/10.1158/0008-5472.CAN-07-2707

    Article  CAS  PubMed  Google Scholar 

  46. Massarweh S, Osborne CK, Jiang S, Wakeling AE, Rimawi M, Mohsin SK, Hilsenbeck S, Schiff R (2006) Mechanisms of tumor regression and resistance to estrogen deprivation and fulvestrant in a model of estrogen receptor-positive, HER-2/neu-positive breast cancer. Cancer Res 66(16):8266–8273. https://doi.org/10.1158/0008-5472.CAN-05-4045

    Article  CAS  PubMed  Google Scholar 

  47. Font de Mora J, Brown M (2000) AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol Cell Biol 20(14):5041–5047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Britton DJ, Hutcheson IR, Knowlden JM, Barrow D, Giles M, McClelland RA, Gee JM, Nicholson RI (2006) Bidirectional cross talk between ERalpha and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res Treat 96(2):131–146. https://doi.org/10.1007/s10549-005-9070-2

    Article  CAS  PubMed  Google Scholar 

  49. Dihge L, Bendahl PO, Grabau D, Isola J, Lovgren K, Ryden L, Ferno M (2008) Epidermal growth factor receptor (EGFR) and the estrogen receptor modulator amplified in breast cancer (AIB1) for predicting clinical outcome after adjuvant tamoxifen in breast cancer. Breast Cancer Res Treat 109(2):255–262. https://doi.org/10.1007/s10549-007-9645-1

    Article  CAS  PubMed  Google Scholar 

  50. Foley J, Nickerson NK, Nam S, Allen KT, Gilmore JL, Nephew KP, Riese DJ 2nd (2010) EGFR signaling in breast cancer: bad to the bone. Semin Cell Dev Biol 21(9):951–960. https://doi.org/10.1016/j.semcdb.2010.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fagan DH, Yee D (2008) Crosstalk between IGF1R and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia 13(4):423–429. https://doi.org/10.1007/s10911-008-9098-0

    Article  PubMed  Google Scholar 

  52. El-Ashry D, Chrysogelos SA, Lippman ME, Kern FG (1996) Estrogen induction of TGF-alpha is mediated by an estrogen response element composed of two imperfect palindromes. J Steroid Biochem Mol Biol 59(3–4):261–269

    Article  CAS  PubMed  Google Scholar 

  53. Wang X, Masri S, Phung S, Chen S (2008) The role of amphiregulin in exemestane-resistant breast cancer cells: evidence of an autocrine loop. Cancer Res 68(7):2259–2265. https://doi.org/10.1158/0008-5472.CAN-07-5544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fan P, Agboke FA, Cunliffe HE, Ramos P, Jordan VC (2014) A molecular model for the mechanism of acquired tamoxifen resistance in breast cancer. Eur J Cancer 50(16):2866–2876. https://doi.org/10.1016/j.ejca.2014.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wilson MA, Chrysogelos SA (2002) Identification and characterization of a negative regulatory element within the epidermal growth factor receptor gene first intron in hormone-dependent breast cancer cells. J Cell Biochem 85(3):601–614. https://doi.org/10.1002/jcb.10168

    Article  CAS  PubMed  Google Scholar 

  56. Bailey ST, Westerling T, Brown M (2015) Loss of estrogen-regulated microRNA expression increases HER2 signaling and is prognostic of poor outcome in luminal breast cancer. Cancer Res 75(2):436–445. https://doi.org/10.1158/0008-5472.CAN-14-1041

    Article  CAS  PubMed  Google Scholar 

  57. Hutcheson IR, Goddard L, Barrow D, McClelland RA, Francies HE, Knowlden JM, Nicholson RI, Gee JM (2011) Fulvestrant-induced expression of ErbB3 and ErbB4 receptors sensitizes oestrogen receptor-positive breast cancer cells to heregulin beta1. Breast Cancer Res 13(2):R29. https://doi.org/10.1186/bcr2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang X, Diaz MR, Yee D (2013) Fulvestrant regulates epidermal growth factor (EGF) family ligands to activate EGF receptor (EGFR) signaling in breast cancer cells. Breast Cancer Res Treat 139(2):351–360. https://doi.org/10.1007/s10549-013-2541-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Osborne CK, Neven P, Dirix LY, Mackey JR, Robert J, Underhill C, Schiff R, Gutierrez C, Migliaccio I, Anagnostou VK, Rimm DL, Magill P, Sellers M (2011) Gefitinib or placebo in combination with tamoxifen in patients with hormone receptor-positive metastatic breast cancer: a randomized phase II study. Clin Cancer Res 17(5):1147–1159. https://doi.org/10.1158/1078-0432.CCR-10-1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cristofanilli M, Valero V, Mangalik A, Royce M, Rabinowitz I, Arena FP, Kroener JF, Curcio E, Watkins C, Bacus S, Cora EM, Anderson E, Magill PJ (2010) Phase II, randomized trial to compare anastrozole combined with gefitinib or placebo in postmenopausal women with hormone receptor-positive metastatic breast cancer. Clin Cancer Res 16(6):1904–1914. https://doi.org/10.1158/1078-0432.CCR-09-2282

    Article  CAS  PubMed  Google Scholar 

  61. Johnston S, Pippen J Jr, Pivot X, Lichinitser M, Sadeghi S, Dieras V, Gomez HL, Romieu G, Manikhas A, Kennedy MJ, Press MF, Maltzman J, Florance A, O’Rourke L, Oliva C, Stein S, Pegram M (2009) Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin Oncol 27(33):5538–5546. https://doi.org/10.1200/JCO.2009.23.3734

    Article  CAS  PubMed  Google Scholar 

  62. Finn RS, Press MF, Dering J, O’Rourke L, Florance A, Ellis C, Martin AM, Johnston S (2014) Quantitative ER and PgR assessment as predictors of benefit from lapatinib in postmenopausal women with hormone receptor-positive, HER2-negative metastatic breast cancer. Clin Cancer Res 20(3):736–743. https://doi.org/10.1158/1078-0432.CCR-13-1260

    Article  CAS  PubMed  Google Scholar 

  63. Creighton CJ, Massarweh S, Huang S, Tsimelzon A, Hilsenbeck SG, Osborne CK, Shou J, Malorni L, Schiff R (2008) Development of resistance to targeted therapies transforms the clinically associated molecular profile subtype of breast tumor xenografts. Cancer Res 68(18):7493–7501. https://doi.org/10.1158/0008-5472.CAN-08-1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Morrison G, Fu X, Shea M, Nanda S, Giuliano M, Wang T, Klinowska T, Osborne CK, Rimawi MF, Schiff R (2014) Therapeutic potential of the dual EGFR/HER2 inhibitor AZD8931 in circumventing endocrine resistance. Breast Cancer Res Treat 144(2):263–272. https://doi.org/10.1007/s10549-014-2878-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bose R, Kavuri SM, Searleman AC, Shen W, Shen D, Koboldt DC, Monsey J, Goel N, Aronson AB, Li S, Ma CX, Ding L, Mardis ER, Ellis MJ (2013) Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov 3(2):224–237. https://doi.org/10.1158/2159-8290.CD-12-0349

    Article  CAS  PubMed  Google Scholar 

  66. Ma CX, Bose R, Gao F, Freedman RA, Telli ML, Kimmick G, Winer E, Naughton M, Goetz MP, Russell C, Tripathy D, Cobleigh M, Forero A, Pluard TJ, Anders C, Niravath PA, Thomas S, Anderson J, Bumb C, Banks KC, Lanman RB, Bryce R, Lalani AS, Pfeifer J, Hayes DF, Pegram M, Blackwell K, Bedard PL, Al-Kateb H, Ellis MJC (2017) Neratinib efficacy and circulating tumor DNA detection of HER2 mutations in HER2 nonamplified metastatic breast cancer. Clin Cancer Res 23(19):5687–5695. https://doi.org/10.1158/1078-0432.CCR-17-0900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C, Bowlby R, Shen H, Hayat S, Fieldhouse R, Lester SC, Tse GM, Factor RE, Collins LC, Allison KH, Chen YY, Jensen K, Johnson NB, Oesterreich S, Mills GB, Cherniack AD, Robertson G, Benz C, Sander C, Laird PW, Hoadley KA, King TA, Network TR, Perou CM (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163(2):506–519. https://doi.org/10.1016/j.cell.2015.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hyman DM, Piha-Paul SA, Won H, Rodon J, Saura C, Shapiro GI, Juric D, Quinn DI, Moreno V, Doger B, Mayer IA, Boni V, Calvo E, Loi S, Lockhart AC, Erinjeri JP, Scaltriti M, Ulaner GA, Patel J, Tang J, Beer H, Selcuklu SD, Hanrahan AJ, Bouvier N, Melcer M, Murali R, Schram AM, Smyth LM, Jhaveri K, Li BT, Drilon A, Harding JJ, Iyer G, Taylor BS, Berger MF, Cutler RE Jr, Xu F, Butturini A, Eli LD, Mann G, Farrell C, Lalani AS, Bryce RP, Arteaga CL, Meric-Bernstam F, Baselga J, Solit DB (2018) HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 554(7691):189–194. https://doi.org/10.1038/nature25475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nayar U, Cohen O, Kapstad C, Waks A, Wander SA, Painter C, Freeman S, Ram P, Persky N, Marini L, Helvie K, Oliver N, Ma CX, Winer EP, Lin NU, Wagle N (2018) Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to ER-directed therapies. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018. Cancer Res 78(13 Suppl):Abstract nr 4952

    Article  Google Scholar 

  70. Toy W, Weir H, Razavi P, Lawson M, Goeppert AU, Mazzola AM, Smith A, Wilson J, Morrow C, Wong WL, De Stanchina E, Carlson KE, Martin TS, Uddin S, Li Z, Fanning S, Katzenellenbogen JA, Greene G, Baselga J, Chandarlapaty S (2017) Activating ESR1 mutations differentially affect the efficacy of ER antagonists. Cancer Discov 7(3):277–287. https://doi.org/10.1158/2159-8290.CD-15-1523

    Article  CAS  PubMed  Google Scholar 

  71. Hyman DP-PS, Saura C, Arteaga C, Mayer I, Shapiro G, Loi S, Lalani A, Xu F, Cutler R, Butturini A, Bryce R, Meric-Bernstam F, Baselga J, Solit D (2017) Neratinib + fulvestrant in ERBB2-mutant, HER2–non-amplified, estrogen receptor (ER)-positive, metastatic breast cancer (MBC): preliminary analysis from the phase II SUMMIT trial. In: Proceedings of the 2016 San Antonio Breast Cancer Symposium. Cancer Res 77(4 Suppl):Abstract nr PD2-08

    Article  Google Scholar 

  72. Yang Y, Yee D (2012) Targeting insulin and insulin-like growth factor signaling in breast cancer. J Mammary Gland Biol Neoplasia 17(3–4):251–261. https://doi.org/10.1007/s10911-012-9268-y

    Article  PubMed  PubMed Central  Google Scholar 

  73. Christopoulos PF, Msaouel P, Koutsilieris M (2015) The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer 14:43. https://doi.org/10.1186/s12943-015-0291-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fox EM, Miller TW, Balko JM, Kuba MG, Sanchez V, Smith RA, Liu S, Gonzalez-Angulo AM, Mills GB, Ye F, Shyr Y, Manning HC, Buck E, Arteaga CL (2011) A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer. Cancer Res 71(21):6773–6784. https://doi.org/10.1158/0008-5472.CAN-11-1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Becker MA, Ibrahim YH, Cui X, Lee AV, Yee D (2011) The IGF pathway regulates ERalpha through a S6K1-dependent mechanism in breast cancer cells. Mol Endocrinol 25(3):516–528. https://doi.org/10.1210/me.2010-0373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Creighton CJ, Casa A, Lazard Z, Huang S, Tsimelzon A, Hilsenbeck SG, Osborne CK, Lee AV (2008) Insulin-like growth factor-I activates gene transcription programs strongly associated with poor breast cancer prognosis. J Clin Oncol 26(25):4078–4085. https://doi.org/10.1200/JCO.2007.13.4429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Farabaugh SM, Boone DN, Lee AV (2015) Role of IGF1R in breast cancer subtypes, stemness, and lineage differentiation. Front Endocrinol 6:59. https://doi.org/10.3389/fendo.2015.00059

    Article  Google Scholar 

  78. Sisci D, Surmacz E (2007) Crosstalk between IGF signaling and steroid hormone receptors in breast cancer. Curr Pharm Des 13(7):705–717

    Article  CAS  PubMed  Google Scholar 

  79. Song RX, Chen Y, Zhang Z, Bao Y, Yue W, Wang JP, Fan P, Santen RJ (2010) Estrogen utilization of IGF-1-R and EGF-R to signal in breast cancer cells. J Steroid Biochem Mol Biol 118(4–5):219–230. https://doi.org/10.1016/j.jsbmb.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  80. Fagan DH, Uselman RR, Sachdev D, Yee D (2012) Acquired resistance to tamoxifen is associated with loss of the type I insulin-like growth factor receptor: implications for breast cancer treatment. Cancer Res 72(13):3372–3380. https://doi.org/10.1158/0008-5472.CAN-12-0684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Martin LA, Pancholi S, Chan CM, Farmer I, Kimberley C, Dowsett M, Johnston SR (2005) The anti-oestrogen ICI 182,780, but not tamoxifen, inhibits the growth of MCF-7 breast cancer cells refractory to long-term oestrogen deprivation through down-regulation of oestrogen receptor and IGF signalling. Endocr Relat Cancer 12(4):1017–1036. https://doi.org/10.1677/erc.1.00905

    Article  CAS  PubMed  Google Scholar 

  82. Sachdev D, Li SL, Hartell JS, Fujita-Yamaguchi Y, Miller JS, Yee D (2003) A chimeric humanized single-chain antibody against the type I insulin-like growth factor (IGF) receptor renders breast cancer cells refractory to the mitogenic effects of IGF-I. Cancer Res 63(3):627–635

    CAS  PubMed  Google Scholar 

  83. Singh P, Alex JM, Bast F (2014) Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Med Oncol 31(1):805. https://doi.org/10.1007/s12032-013-0805-3

    Article  CAS  PubMed  Google Scholar 

  84. Chen J, Nagle AM, Wang YF, Boone DN, Lee AV (2018) Controlled dimerization of insulin-like growth factor-1 and insulin receptors reveal shared and distinct activities of holo and hybrid receptors. J Biol Chem. https://doi.org/10.1074/jbc.M117.789503

    Article  CAS  Google Scholar 

  85. Chakraborty A, Hatzis C, DiGiovanna MP (2017) Co-targeting the HER and IGF/insulin receptor axis in breast cancer, with triple targeting with endocrine therapy for hormone-sensitive disease. Breast Cancer Res Treat 163(1):37–50. https://doi.org/10.1007/s10549-017-4169-9

    Article  CAS  PubMed  Google Scholar 

  86. Fearon AE, Gould CR, Grose RP (2013) FGFR signalling in women’s cancers. Int J Biochem Cell Biol 45(12):2832–2842. https://doi.org/10.1016/j.biocel.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  87. Haugsten EM, Wiedlocha A, Olsnes S, Wesche J (2010) Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res 8(11):1439–1452. https://doi.org/10.1158/1541-7786.MCR-10-0168

    Article  CAS  PubMed  Google Scholar 

  88. Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R (2016) The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res 22(1):259–267. https://doi.org/10.1158/1078-0432.CCR-14-3212

    Article  CAS  PubMed  Google Scholar 

  89. Elbauomy Elsheikh S, Green AR, Lambros MB, Turner NC, Grainge MJ, Powe D, Ellis IO, Reis-Filho JS (2007) FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res 9(2):R23. https://doi.org/10.1186/bcr1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, Natrajan R, Marchio C, Iorns E, Mackay A, Gillett C, Grigoriadis A, Tutt A, Reis-Filho JS, Ashworth A (2010) FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res 70(5):2085–2094. https://doi.org/10.1158/0008-5472.CAN-09-3746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Turczyk L, Kitowska K, Mieszkowska M, Mieczkowski K, Czaplinska D, Piasecka D, Kordek R, Skladanowski AC, Potemski P, Romanska HM, Sadej R (2017) FGFR2-driven signaling counteracts tamoxifen effect on ERalpha-positive breast cancer cells. Neoplasia 19(10):791–804. https://doi.org/10.1016/j.neo.2017.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Meijer D, Sieuwerts AM, Look MP, van Agthoven T, Foekens JA, Dorssers LC (2008) Fibroblast growth factor receptor 4 predicts failure on tamoxifen therapy in patients with recurrent breast cancer. Endocr Relat Cancer 15(1):101–111. https://doi.org/10.1677/ERC-07-0080

    Article  CAS  PubMed  Google Scholar 

  93. Brunello E, Brunelli M, Bogina G, Calio A, Manfrin E, Nottegar A, Vergine M, Molino A, Bria E, Massari F, Tortora G, Cingarlini S, Pedron S, Chilosi M, Zamboni G, Miller K, Martignoni G, Bonetti F (2012) FGFR-1 amplification in metastatic lymph-nodal and haematogenous lobular breast carcinoma. J Exp Clin Cancer Res 31:103. https://doi.org/10.1186/1756-9966-31-103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sikora MJ, Cooper KL, Bahreini A, Luthra S, Wang G, Chandran UR, Davidson NE, Dabbs DJ, Welm AL, Oesterreich S (2014) Invasive lobular carcinoma cell lines are characterized by unique estrogen-mediated gene expression patterns and altered tamoxifen response. Cancer Res 74(5):1463–1474. https://doi.org/10.1158/0008-5472.CAN-13-2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Formisano L, Stauffer KM, Young CD, Bhola NE, Guerrero-Zotano AL, Jansen VM, Estrada MM, Hutchinson KE, Giltnane JM, Schwarz LJ, Lu Y, Balko JM, Deas O, Cairo S, Judde JG, Mayer IA, Sanders M, Dugger TC, Bianco R, Stricker T, Arteaga CL (2017) Association of FGFR1 with ERalpha maintains ligand-independent ER transcription and mediates resistance to estrogen deprivation in ER(+) breast cancer. Clin Cancer Res 23(20):6138–6150. https://doi.org/10.1158/1078-0432.CCR-17-1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Andre F, Bachelot T, Campone M, Dalenc F, Perez-Garcia JM, Hurvitz SA, Turner N, Rugo H, Smith JW, Deudon S, Shi M, Zhang Y, Kay A, Porta DG, Yovine A, Baselga J (2013) Targeting FGFR with dovitinib (TKI258): preclinical and clinical data in breast cancer. Clin Cancer Res 19(13):3693–3702. https://doi.org/10.1158/1078-0432.CCR-13-0190

    Article  CAS  PubMed  Google Scholar 

  97. Musolino A, Campone M, Neven P, Denduluri N, Barrios CH, Cortes J, Blackwell K, Soliman H, Kahan Z, Bonnefoi H, Squires M, Zhang Y, Deudon S, Shi MM, Andre F (2017) Phase II, randomized, placebo-controlled study of dovitinib in combination with fulvestrant in postmenopausal patients with HR(+), HER2(−) breast cancer that had progressed during or after prior endocrine therapy. Breast Cancer Res 19(1):18. https://doi.org/10.1186/s13058-017-0807-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Papadopoulos KP, El-Rayes BF, Tolcher AW, Patnaik A, Rasco DW, Harvey RD, LoRusso PM, Sachdev JC, Abbadessa G, Savage RE, Hall T, Schwartz B, Wang Y, Kazakin J, Shaib WL (2017) A phase 1 study of ARQ 087, an oral pan-FGFR inhibitor in patients with advanced solid tumours. Br J Cancer 117(11):1592–1599. https://doi.org/10.1038/bjc.2017.330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Soria JC, DeBraud F, Bahleda R, Adamo B, Andre F, Dienstmann R, Delmonte A, Cereda R, Isaacson J, Litten J, Allen A, Dubois F, Saba C, Robert R, D’Incalci M, Zucchetti M, Camboni MG, Tabernero J (2014) Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Ann Oncol 25(11):2244–2251. https://doi.org/10.1093/annonc/mdu390

    Article  PubMed  Google Scholar 

  100. Babina IS, Turner NC (2017) Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer 17(5):318–332. https://doi.org/10.1038/nrc.2017.8

    Article  CAS  PubMed  Google Scholar 

  101. Pearson A, Smyth E, Babina IS, Herrera-Abreu MT, Tarazona N, Peckitt C, Kilgour E, Smith NR, Geh C, Rooney C, Cutts R, Campbell J, Ning J, Fenwick K, Swain A, Brown G, Chua S, Thomas A, Johnston SRD, Ajaz M, Sumpter K, Gillbanks A, Watkins D, Chau I, Popat S, Cunningham D, Turner NC (2016) High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov 6(8):838–851. https://doi.org/10.1158/2159-8290.CD-15-1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cortes J, Im SA, Holgado E, Perez-Garcia JM, Schmid P, Chavez-MacGregor M (2017) The next era of treatment for hormone receptor-positive, HER2-negative advanced breast cancer: triplet combination-based endocrine therapies. Cancer Treat Rev 61:53–60. https://doi.org/10.1016/j.ctrv.2017.09.011

    Article  CAS  PubMed  Google Scholar 

  103. Turner NC, Neven P, Loibl S, Andre F (2017) Advances in the treatment of advanced oestrogen-receptor-positive breast cancer. Lancet 389(10087):2403–2414. https://doi.org/10.1016/S0140-6736(16)32419-9

    Article  CAS  PubMed  Google Scholar 

  104. Mills GB, Kohn E, Lu Y, Eder A, Fang X, Wang H, Bast RC, Gray J, Jaffe R, Hortobagyi G (2003) Linking molecular diagnostics to molecular therapeutics: targeting the PI3K pathway in breast cancer. Semin Oncol 30(5 Suppl 16):93–104

    Article  CAS  PubMed  Google Scholar 

  105. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4(12):988–1004. https://doi.org/10.1038/nrd1902

    Article  CAS  PubMed  Google Scholar 

  106. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, Symmans WF, Pusztai L, Nolden LK, Horlings H, Berns K, Hung MC, van de Vijver MJ, Valero V, Gray JW, Bernards R, Mills GB, Hennessy BT (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68(15):6084–6091. https://doi.org/10.1158/0008-5472.CAN-07-6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ellis MJ, Lin L, Crowder R, Tao Y, Hoog J, Snider J, Davies S, DeSchryver K, Evans DB, Steinseifer J, Bandaru R, Liu W, Gardner H, Semiglazov V, Watson M, Hunt K, Olson J, Baselga J (2010) Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Res Treat 119(2):379–390. https://doi.org/10.1007/s10549-009-0575-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS, Cristiano BE, Pearson RB, Phillips WA (2004) Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64(21):7678–7681. https://doi.org/10.1158/0008-5472.CAN-04-2933

    Article  CAS  PubMed  Google Scholar 

  109. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. https://doi.org/10.1038/nature11412

    Article  CAS  Google Scholar 

  110. Loi S, Haibe-Kains B, Majjaj S, Lallemand F, Durbecq V, Larsimont D, Gonzalez-Angulo AM, Pusztai L, Symmans WF, Bardelli A, Ellis P, Tutt AN, Gillett CE, Hennessy BT, Mills GB, Phillips WA, Piccart MJ, Speed TP, McArthur GA, Sotiriou C (2010) PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proc Natl Acad Sci U S A 107(22):10208–10213. https://doi.org/10.1073/pnas.0907011107

    Article  PubMed  PubMed Central  Google Scholar 

  111. Creighton CJ, Fu X, Hennessy BT, Casa AJ, Zhang Y, Gonzalez-Angulo AM, Lluch A, Gray JW, Brown PH, Hilsenbeck SG, Osborne CK, Mills GB, Lee AV, Schiff R (2010) Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Res 12(3):R40. https://doi.org/10.1186/bcr2594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Miller TW, Perez-Torres M, Narasanna A, Guix M, Stal O, Perez-Tenorio G, Gonzalez-Angulo AM, Hennessy BT, Mills GB, Kennedy JP, Lindsley CW, Arteaga CL (2009) Loss of phosphatase and tensin homologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor signaling to promote antiestrogen resistance in breast cancer. Cancer Res 69(10):4192–4201. https://doi.org/10.1158/0008-5472.CAN-09-0042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Miller TW, Hennessy BT, Gonzalez-Angulo AM, Fox EM, Mills GB, Chen H, Higham C, Garcia-Echeverria C, Shyr Y, Arteaga CL (2010) Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J Clin Invest 120(7):2406–2413. https://doi.org/10.1172/JCI41680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fu X, Creighton CJ, Biswal NC, Kumar V, Shea M, Herrera S, Contreras A, Gutierrez C, Wang T, Nanda S, Giuliano M, Morrison G, Nardone A, Karlin KL, Westbrook TF, Heiser LM, Anur P, Spellman P, Guichard SM, Smith PD, Davies BR, Klinowska T, Lee AV, Mills GB, Rimawi MF, Hilsenbeck SG, Gray JW, Joshi A, Osborne CK, Schiff R (2014) Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase. Breast Cancer Res 16(5):430. https://doi.org/10.1186/s13058-014-0430-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Toska E, Osmanbeyoglu HU, Castel P, Chan C, Hendrickson RC, Elkabets M, Dickler MN, Scaltriti M, Leslie CS, Armstrong SA, Baselga J (2017) PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science 355(6331):1324–1330. https://doi.org/10.1126/science.aah6893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bosch A, Li Z, Bergamaschi A, Ellis H, Toska E, Prat A, Tao JJ, Spratt DE, Viola-Villegas NT, Castel P, Minuesa G, Morse N, Rodon J, Ibrahim Y, Cortes J, Perez-Garcia J, Galvan P, Grueso J, Guzman M, Katzenellenbogen JA, Kharas M, Lewis JS, Dickler M, Serra V, Rosen N, Chandarlapaty S, Scaltriti M, Baselga J (2015) PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci Transl Med 7(283):283ra251. https://doi.org/10.1126/scitranslmed.aaa4442

    Article  CAS  Google Scholar 

  117. Vilquin P, Villedieu M, Grisard E, Ben Larbi S, Ghayad SE, Heudel PE, Bachelot T, Corbo L, Treilleux I, Vendrell JA, Cohen PA (2013) Molecular characterization of anastrozole resistance in breast cancer: pivotal role of the Akt/mTOR pathway in the emergence of de novo or acquired resistance and importance of combining the allosteric Akt inhibitor MK-2206 with an aromatase inhibitor. Int J Cancer 133(7):1589–1602. https://doi.org/10.1002/ijc.28182

    Article  CAS  PubMed  Google Scholar 

  118. Schettini F, Buono G, Trivedi MV, De Placido S, Arpino G, Giuliano M (2017) PI3K/mTOR inhibitors in the treatment of luminal breast cancer. Why, when and to whom? Breast Care 12(5):290–294. https://doi.org/10.1159/000481657

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ciruelos Gil EM (2014) Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. Cancer Treat Rev 40(7):862–871. https://doi.org/10.1016/j.ctrv.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  120. Zardavas D, Fumagalli D, Loi S (2012) Phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway inhibition: a breakthrough in the management of luminal (ER+/HER2-) breast cancers? Curr Opin Oncol 24(6):623–634. https://doi.org/10.1097/CCO.0b013e328358a2b5

    Article  CAS  PubMed  Google Scholar 

  121. Agarwal R, Carey M, Hennessy B, Mills GB (2010) PI3K pathway-directed therapeutic strategies in cancer. Curr Opin Investig Drugs 11(6):615–628

    CAS  PubMed  Google Scholar 

  122. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun F, Beck JT, Ito Y, Yardley D, Deleu I, Perez A, Bachelot T, Vittori L, Xu Z, Mukhopadhyay P, Lebwohl D, Hortobagyi GN (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366(6):520–529. https://doi.org/10.1056/NEJMoa1109653

    Article  CAS  PubMed  Google Scholar 

  123. Bachelot T, Bourgier C, Cropet C, Ray-Coquard I, Ferrero JM, Freyer G, Abadie-Lacourtoisie S, Eymard JC, Debled M, Spaeth D, Legouffe E, Allouache D, El Kouri C, Pujade-Lauraine E (2012) Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J Clin Oncol 30(22):2718–2724. https://doi.org/10.1200/JCO.2011.39.0708

    Article  CAS  PubMed  Google Scholar 

  124. Zhang X, Li XR, Zhang J (2013) Current status and future perspectives of PI3K and mTOR inhibitor as anticancer drugs in breast cancer. Curr Cancer Drug Targets 13(2):175–187

    Article  CAS  PubMed  Google Scholar 

  125. Baselga JDS, Cortés H et al (2018) Phase III study of taselisib (GDC-0032) + fulvestrant (FULV) v FULV in patients (pts) with estrogen receptor (ER)-positive, PIK3CA-mutant (MUT), locally advanced or metastatic breast cancer (MBC): primary analysis from SANDPIPER. In: Proceedings of the 2018 ASCO Annual Meeting. J Clin Oncol suppl:abstr LBA1006

    Article  Google Scholar 

  126. Dickler MN, Saura C, Richards D, Krop I, Cervantes A, Bedard PL, Patel MR, Pusztai L, Oliveira M, Cardenas AK, Cui N, Wilson TR, Stout TJ, Wei MC, Hsu JY, Baselga J (2018) Phase II study of taselisib (GDC0032) in combination with fulvestrant in patients with HER2-negative, hormone receptor-positive advanced breast cancer. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-0613

    Article  PubMed  PubMed Central  Google Scholar 

  127. Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M, Cichowski K (2006) A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10(6):459–472. https://doi.org/10.1016/j.ccr.2006.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gluck S (2017) Consequences of the convergence of multiple alternate pathways on the estrogen receptor in the treatment of metastatic breast cancer. Clin Breast Cancer 17(2):79–90. https://doi.org/10.1016/j.clbc.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  129. O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66(3):1500–1508. https://doi.org/10.1158/0008-5472.CAN-05-2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fu X, Osborne CK, Schiff R (2013) Biology and therapeutic potential of PI3K signaling in ER+/HER2-negative breast cancer. Breast 22(Suppl 2):S12–S18. https://doi.org/10.1016/j.breast.2013.08.001

    Article  PubMed  Google Scholar 

  131. Huang H, Tindall DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120(Pt 15):2479–2487. https://doi.org/10.1242/jcs.001222

    Article  CAS  PubMed  Google Scholar 

  132. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J, Rosen N (2011) AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19(1):58–71. https://doi.org/10.1016/j.ccr.2010.10.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chakrabarty A, Sanchez V, Kuba MG, Rinehart C, Arteaga CL (2012) Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proc Natl Acad Sci U S A 109(8):2718–2723. https://doi.org/10.1073/pnas.1018001108

    Article  PubMed  Google Scholar 

  134. Loi S, Michiels S, Baselga J, Bartlett JM, Singhal SK, Sabine VS, Sims AH, Sahmoud T, Dixon JM, Piccart MJ, Sotiriou C (2013) PIK3CA genotype and a PIK3CA mutation-related gene signature and response to everolimus and letrozole in estrogen receptor positive breast cancer. PLoS One 8(1):e53292. https://doi.org/10.1371/journal.pone.0053292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26(22):3100–3112. https://doi.org/10.1038/sj.onc.1210392

    Article  CAS  PubMed  Google Scholar 

  136. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9(9):726–735

    Article  CAS  PubMed  Google Scholar 

  137. Yao Z, Seger R (2009) The ERK signaling cascade--views from different subcellular compartments. Biofactors 35(5):407–416. https://doi.org/10.1002/biof.52

    Article  CAS  PubMed  Google Scholar 

  138. Thomas RS, Sarwar N, Phoenix F, Coombes RC, Ali S (2008) Phosphorylation at serines 104 and 106 by Erk1/2 MAPK is important for estrogen receptor-alpha activity. J Mol Endocrinol 40(4):173–184. https://doi.org/10.1677/JME-07-0165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Creighton CJ, Hilger AM, Murthy S, Rae JM, Chinnaiyan AM, El-Ashry D (2006) Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Res 66(7):3903–3911. https://doi.org/10.1158/0008-5472.CAN-05-4363

    Article  CAS  PubMed  Google Scholar 

  140. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270(5241):1491–1494

    Article  CAS  PubMed  Google Scholar 

  141. Mendes-Pereira AM, Sims D, Dexter T, Fenwick K, Assiotis I, Kozarewa I, Mitsopoulos C, Hakas J, Zvelebil M, Lord CJ, Ashworth A (2012) Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen. Proc Natl Acad Sci U S A 109(8):2730–2735. https://doi.org/10.1073/pnas.1018872108

    Article  PubMed  Google Scholar 

  142. Wallace MD, Pfefferle AD, Shen L, McNairn AJ, Cerami EG, Fallon BL, Rinaldi VD, Southard TL, Perou CM, Schimenti JC (2012) Comparative oncogenomics implicates the neurofibromin 1 gene (NF1) as a breast cancer driver. Genetics 192(2):385–396. https://doi.org/10.1534/genetics.112.142802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Martin LA, Farmer I, Johnston SR, Ali S, Dowsett M (2005) Elevated ERK1/ERK2/estrogen receptor cross-talk enhances estrogen-mediated signaling during long-term estrogen deprivation. Endocr Relat Cancer 12(Suppl 1):S75–S84. https://doi.org/10.1677/erc.1.01023

    Article  CAS  PubMed  Google Scholar 

  144. Stires H, Heckler MM, Fu X, Li Z, Grasso CS, Quist MJ, Lewis JA, Klimach U, Zwart A, Mahajan A, Gyorffy B, Cavalli LR, Riggins RB (2017) Integrated molecular analysis of tamoxifen-resistant invasive lobular breast cancer cells identifies MAPK and GRM/mGluR signaling as therapeutic vulnerabilities. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2017.09.024

    Article  CAS  PubMed  Google Scholar 

  145. Marino M, Galluzzo P, Ascenzi P (2006) Estrogen signaling multiple pathways to impact gene transcription. Curr Genomics 7(8):497–508

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhong SP, Ma WY, Dong Z (2000) ERKs and p38 kinases mediate ultraviolet B-induced phosphorylation of histone H3 at serine 10. J Biol Chem 275(28):20980–20984. https://doi.org/10.1074/jbc.M909934199

    Article  CAS  PubMed  Google Scholar 

  147. Rao PS, Satelli A, Zhang S, Srivastava SK, Srivenugopal KS, Rao US (2009) RNF2 is the target for phosphorylation by the p38 MAPK and ERK signaling pathways. Proteomics 9(10):2776–2787. https://doi.org/10.1002/pmic.200800847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Antoon JW, Martin EC, Lai R, Salvo VA, Tang Y, Nitzchke AM, Elliott S, Nam SY, Xiong W, Rhodes LV, Collins-Burow B, David O, Wang G, Shan B, Beckman BS, Nephew KP, Burow ME (2013) MEK5/ERK5 signaling suppresses estrogen receptor expression and promotes hormone-independent tumorigenesis. PLoS One 8(8):e69291. https://doi.org/10.1371/journal.pone.0069291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Madak-Erdogan Z, Lupien M, Stossi F, Brown M, Katzenellenbogen BS (2011) Genomic collaboration of estrogen receptor alpha and extracellular signal-regulated kinase 2 in regulating gene and proliferation programs. Mol Cell Biol 31(1):226–236. https://doi.org/10.1128/MCB.00821-10

    Article  CAS  PubMed  Google Scholar 

  150. Madak-Erdogan Z, Ventrella R, Petry L, Katzenellenbogen BS (2014) Novel roles for ERK5 and cofilin as critical mediators linking ERalpha-driven transcription, actin reorganization, and invasiveness in breast cancer. Mol Cancer Res 12(5):714–727. https://doi.org/10.1158/1541-7786.MCR-13-0588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bayliss J, Hilger A, Vishnu P, Diehl K, El-Ashry D (2007) Reversal of the estrogen receptor negative phenotype in breast cancer and restoration of antiestrogen response. Clin Cancer Res 13(23):7029–7036. https://doi.org/10.1158/1078-0432.CCR-07-0587

    Article  CAS  PubMed  Google Scholar 

  152. Polo ML, Arnoni MV, Riggio M, Wargon V, Lanari C, Novaro V (2010) Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice. PloS One 5(5):e10786. https://doi.org/10.1371/journal.pone.0010786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zaman K, Winterhalder R, Mamot C, Hasler-Strub U, Rochlitz C, Mueller A, Berset C, Wiliders H, Perey L, Rudolf CB, Hawle H, Rondeau S, Neven P (2015) Fulvestrant with or without selumetinib, a MEK 1/2 inhibitor, in breast cancer progressing after aromatase inhibitor therapy: a multicentre randomised placebo-controlled double-blind phase II trial, SAKK 21/08. Eur J Cancer 51(10):1212–1220. https://doi.org/10.1016/j.ejca.2015.03.016

    Article  CAS  PubMed  Google Scholar 

  154. Playford MP, Schaller MD (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene 23(48):7928–7946. https://doi.org/10.1038/sj.onc.1208080

    Article  CAS  PubMed  Google Scholar 

  155. Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, Joffe EB, Simian M (2012) The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through beta1 integrin. Breast Cancer Res Treat 133(2):459–471. https://doi.org/10.1007/s10549-011-1766-x

    Article  CAS  PubMed  Google Scholar 

  156. Bon G, Folgiero V, Bossi G, Felicioni L, Marchetti A, Sacchi A, Falcioni R (2006) Loss of beta4 integrin subunit reduces the tumorigenicity of MCF7 mammary cells and causes apoptosis upon hormone deprivation. Clin Cancer Res 12(11 Pt 1):3280–3287. https://doi.org/10.1158/1078-0432.CCR-05-2223

    Article  CAS  PubMed  Google Scholar 

  157. Nistico P, Di Modugno F, Spada S, Bissell MJ (2014) β1 and β4 integrins: from breast development to clinical practice. Breast Cancer Res 16(5):459

    Google Scholar 

  158. Schlaepfer DD, Mitra SK, Ilic D (2004) Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta 1692(2–3):77–102. https://doi.org/10.1016/j.bbamcr.2004.04.008

    Article  CAS  PubMed  Google Scholar 

  159. Frei A, MacDonald G, Lund I, Gustafsson JA, Hynes NE, Nalvarte I (2016) Memo interacts with c-Src to control estrogen receptor alpha sub-cellular localization. Oncotarget 7(35):56170–56182. https://doi.org/10.18632/oncotarget.10856

    Article  PubMed  PubMed Central  Google Scholar 

  160. Chakravarty D, Nair SS, Santhamma B, Nair BC, Wang L, Bandyopadhyay A, Agyin JK, Brann D, Sun LZ, Yeh IT, Lee FY, Tekmal RR, Kumar R, Vadlamudi RK (2010) Extranuclear functions of ER impact invasive migration and metastasis by breast cancer cells. Cancer Res 70(10):4092–4101. https://doi.org/10.1158/0008-5472.CAN-09-3834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hiscox S, Morgan L, Green TP, Barrow D, Gee J, Nicholson RI (2006) Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res Treat 97(3):263–274. https://doi.org/10.1007/s10549-005-9120-9

    Article  CAS  PubMed  Google Scholar 

  162. Hiscox S, Jordan NJ, Morgan L, Green TP, Nicholson RI (2007) Src kinase promotes adhesion-independent activation of FAK and enhances cellular migration in tamoxifen-resistant breast cancer cells. Clin Exp Metastasis 24(3):157–167. https://doi.org/10.1007/s10585-007-9065-y

    Article  CAS  PubMed  Google Scholar 

  163. Planas-Silva MD, Bruggeman RD, Grenko RT, Stanley Smith J (2006) Role of c-Src and focal adhesion kinase in progression and metastasis of estrogen receptor-positive breast cancer. Biochem Biophys Res Commun 341(1):73–81. https://doi.org/10.1016/j.bbrc.2005.12.164

    Article  CAS  PubMed  Google Scholar 

  164. Morgan L, Gee J, Pumford S, Farrow L, Finlay P, Robertson J, Ellis I, Kawakatsu H, Nicholson R, Hiscox S (2009) Elevated Src kinase activity attenuates tamoxifen response in vitro and is associated with poor prognosis clinically. Cancer Biol Ther 8(16):1550–1558

    Article  CAS  PubMed  Google Scholar 

  165. Schwarz LJ, Fox EM, Balko JM, Garrett JT, Kuba MG, Estrada MV, Gonzalez-Angulo AM, Mills GB, Red-Brewer M, Mayer IA, Abramson V, Rizzo M, Kelley MC, Meszoely IM, Arteaga CL (2014) LYN-activating mutations mediate antiestrogen resistance in estrogen receptor-positive breast cancer. J Clin Invest 124(12):5490–5502. https://doi.org/10.1172/JCI72573

    Article  PubMed  PubMed Central  Google Scholar 

  166. Ojo D, Wei F, Liu Y, Wang E, Zhang H, Lin X, Wong N, Bane A, Tang D (2015) Factors promoting tamoxifen resistance in breast cancer via stimulating breast cancer stem cell expansion. Curr Med Chem 22(19):2360–2374

    Article  CAS  PubMed  Google Scholar 

  167. Hiscox S, Jordan NJ, Smith C, James M, Morgan L, Taylor KM, Green TP, Nicholson RI (2009) Dual targeting of Src and ER prevents acquired antihormone resistance in breast cancer cells. Breast Cancer Res Treat 115(1):57–67. https://doi.org/10.1007/s10549-008-0058-6

    Article  CAS  PubMed  Google Scholar 

  168. Guest SK, Ribas R, Pancholi S, Nikitorowicz-Buniak J, Simigdala N, Dowsett M, Johnston SR, Martin LA (2016) Src is a potential therapeutic target in endocrine-resistant breast cancer exhibiting low estrogen receptor-mediated transactivation. PLoS One 11(6):e0157397. https://doi.org/10.1371/journal.pone.0157397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mayer EL, Baurain JF, Sparano J, Strauss L, Campone M, Fumoleau P, Rugo H, Awada A, Sy O, Llombart-Cussac A (2011) A phase 2 trial of dasatinib in patients with advanced HER2-positive and/or hormone receptor-positive breast cancer. Clin Cancer Res 17(21):6897–6904. https://doi.org/10.1158/1078-0432.CCR-11-0070

    Article  CAS  PubMed  Google Scholar 

  170. Herold CI, Chadaram V, Peterson BL, Marcom PK, Hopkins J, Kimmick GG, Favaro J, Hamilton E, Welch RA, Bacus S, Blackwell KL (2011) Phase II trial of dasatinib in patients with metastatic breast cancer using real-time pharmacodynamic tissue biomarkers of Src inhibition to escalate dosing. Clin Cancer Res 17(18):6061–6070. https://doi.org/10.1158/1078-0432.CCR-11-1071

    Article  CAS  PubMed  Google Scholar 

  171. Kang Y, Hu W, Ivan C, Dalton HJ, Miyake T, Pecot CV, Zand B, Liu T, Huang J, Jennings NB, Rupaimoole R, Taylor M, Pradeep S, Wu SY, Lu C, Wen Y, Huang J, Liu J, Sood AK (2013) Role of focal adhesion kinase in regulating YB-1-mediated paclitaxel resistance in ovarian cancer. J Natl Cancer Inst 105(19):1485–1495. https://doi.org/10.1093/jnci/djt210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Johnston SR, Lu B, Scott GK, Kushner PJ, Smith IE, Dowsett M, Benz CC (1999) Increased activator protein-1 DNA binding and c-Jun NH2-terminal kinase activity in human breast tumors with acquired tamoxifen resistance. Clin Cancer Res 5(2):251–256

    CAS  PubMed  Google Scholar 

  173. Schiff R, Reddy P, Ahotupa M, Coronado-Heinsohn E, Grim M, Hilsenbeck SG, Lawrence R, Deneke S, Herrera R, Chamness GC, Fuqua SA, Brown PH, Osborne CK (2000) Oxidative stress and AP-1 activity in tamoxifen-resistant breast tumors in vivo. J Natl Cancer Inst 92(23):1926–1934

    Article  CAS  PubMed  Google Scholar 

  174. Wu RC, Qin J, Yi P, Wong J, Tsai SY, Tsai MJ, O’Malley BW (2004) Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic responses to multiple cellular signaling pathways. Mol Cell 15(6):937–949. https://doi.org/10.1016/j.molcel.2004.08.019

    Article  CAS  PubMed  Google Scholar 

  175. Hibi M, Lin A, Smeal T, Minden A, Karin M (1993) Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7(11):2135–2148

    Article  CAS  PubMed  Google Scholar 

  176. Shaulian E (2010) AP-1--the Jun proteins: oncogenes or tumor suppressors in disguise? Cell Signal 22(6):894–899. https://doi.org/10.1016/j.cellsig.2009.12.008

    Article  CAS  PubMed  Google Scholar 

  177. Malorni L, Giuliano M, Migliaccio I, Wang T, Creighton CJ, Lupien M, Fu X, Hilsenbeck SG, Healy N, De Angelis C, Mazumdar A, Trivedi MV, Massarweh S, Gutierrez C, De Placido S, Jeselsohn R, Brown M, Brown PH, Osborne CK, Schiff R (2016) Blockade of AP-1 potentiates endocrine therapy and overcomes resistance. Mol Cancer Res 14(5):470–481. https://doi.org/10.1158/1541-7786.MCR-15-0423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. He H, Sinha I, Fan R, Haldosen LA, Yan F, Zhao C, Dahlman-Wright K (2018) c-Jun/AP-1 overexpression reprograms ERalpha signaling related to tamoxifen response in ERalpha-positive breast cancer. Oncogene. https://doi.org/10.1038/s41388-018-0165-8

    Article  CAS  PubMed  Google Scholar 

  179. Chen LF, Greene WC (2004) Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 5(5):392–401. https://doi.org/10.1038/nrm1368

    Article  CAS  PubMed  Google Scholar 

  180. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–310. https://doi.org/10.1038/nrc780

    Article  CAS  PubMed  Google Scholar 

  181. Bennett L, Quinn J, McCall P, Mallon EA, Horgan PG, McMillan DC, Paul A, Edwards J (2017) High IKKalpha expression is associated with reduced time to recurrence and cancer specific survival in oestrogen receptor (ER)-positive breast cancer. Int J Cancer 140(7):1633–1644. https://doi.org/10.1002/ijc.30578

    Article  CAS  PubMed  Google Scholar 

  182. Van Laere SJ, Van der Auwera I, Van den Eynden GG, van Dam P, Van Marck EA, Vermeulen PB, Dirix LY (2007) NF-kappaB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation. Br J Cancer 97(5):659–669. https://doi.org/10.1038/sj.bjc.6603906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Van Laere SJ, Van der Auwera I, Van den Eynden GG, Elst HJ, Weyler J, Harris AL, van Dam P, Van Marck EA, Vermeulen PB, Dirix LY (2006) Nuclear factor-kappaB signature of inflammatory breast cancer by cDNA microarray validated by quantitative real-time reverse transcription-PCR, immunohistochemistry, and nuclear factor-kappaB DNA-binding. Clin Cancer Res 12(11 Pt 1):3249–3256. https://doi.org/10.1158/1078-0432.CCR-05-2800

    Article  PubMed  Google Scholar 

  184. Ghisletti S, Meda C, Maggi A, Vegeto E (2005) 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol 25(8):2957–2968. https://doi.org/10.1128/MCB.25.8.2957-2968.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jones RL, Rojo F, A’Hern R, Villena N, Salter J, Corominas JM, Servitja S, Smith IE, Rovira A, Reis-Filho JS, Dowsett M, Albanell J (2011) Nuclear NF-kappaB/p65 expression and response to neoadjuvant chemotherapy in breast cancer. J Clin Pathol 64(2):130–135. https://doi.org/10.1136/jcp.2010.082966

    Article  PubMed  Google Scholar 

  186. Montagut C, Tusquets I, Ferrer B, Corominas JM, Bellosillo B, Campas C, Suarez M, Fabregat X, Campo E, Gascon P, Serrano S, Fernandez PL, Rovira A, Albanell J (2006) Activation of nuclear factor-kappa B is linked to resistance to neoadjuvant chemotherapy in breast cancer patients. Endocr Relat Cancer 13(2):607–616. https://doi.org/10.1677/erc.1.01171

    Article  CAS  PubMed  Google Scholar 

  187. Zhou Y, Eppenberger-Castori S, Marx C, Yau C, Scott GK, Eppenberger U, Benz CC (2005) Activation of nuclear factor-kappaB (NFkappaB) identifies a high-risk subset of hormone-dependent breast cancers. Int J Biochem Cell Biol 37(5):1130–1144. https://doi.org/10.1016/j.biocel.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  188. Paimela T, Ryhanen T, Mannermaa E, Ojala J, Kalesnykas G, Salminen A, Kaarniranta K (2007) The effect of 17beta-estradiol on IL-6 secretion and NF-kappaB DNA-binding activity in human retinal pigment epithelial cells. Immunol Lett 110(2):139–144. https://doi.org/10.1016/j.imlet.2007.04.008

    Article  CAS  PubMed  Google Scholar 

  189. Nettles KW, Gil G, Nowak J, Metivier R, Sharma VB, Greene GL (2008) CBP is a dosage-dependent regulator of nuclear factor-kappaB suppression by the estrogen receptor. Mol Endocrinol 22(2):263–272. https://doi.org/10.1210/me.2007-0324

    Article  CAS  PubMed  Google Scholar 

  190. Frasor J, El-Shennawy L, Stender JD, Kastrati I (2015) NFkappaB affects estrogen receptor expression and activity in breast cancer through multiple mechanisms. Mol Cell Endocrinol 418(Pt 3):235–239. https://doi.org/10.1016/j.mce.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  191. Belguise K, Sonenshein GE (2007) PKCtheta promotes c-Rel-driven mammary tumorigenesis in mice and humans by repressing estrogen receptor alpha synthesis. J Clin Invest 117(12):4009–4021. https://doi.org/10.1172/JCI32424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Frasor J, Weaver A, Pradhan M, Dai Y, Miller LD, Lin CY, Stanculescu A (2009) Positive cross-talk between estrogen receptor and NF-kappaB in breast cancer. Cancer Res 69(23):8918–8925. https://doi.org/10.1158/0008-5472.CAN-09-2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Frasor J, Weaver AE, Pradhan M, Mehta K (2008) Synergistic up-regulation of prostaglandin E synthase expression in breast cancer cells by 17beta-estradiol and proinflammatory cytokines. Endocrinology 149(12):6272–6279. https://doi.org/10.1210/en.2008-0352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Pradhan M, Bembinster LA, Baumgarten SC, Frasor J (2010) Proinflammatory cytokines enhance estrogen-dependent expression of the multidrug transporter gene ABCG2 through estrogen receptor and NF{kappa}B cooperativity at adjacent response elements. J Biol Chem 285(41):31100–31106. https://doi.org/10.1074/jbc.M110.155309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Rubio MF, Werbajh S, Cafferata EG, Quaglino A, Colo GP, Nojek IM, Kordon EC, Nahmod VE, Costas MA (2006) TNF-alpha enhances estrogen-induced cell proliferation of estrogen-dependent breast tumor cells through a complex containing nuclear factor-kappa B. Oncogene 25(9):1367–1377. https://doi.org/10.1038/sj.onc.1209176

    Article  CAS  PubMed  Google Scholar 

  196. Riggins RB, Zwart A, Nehra R, Clarke R (2005) The nuclear factor kappa B inhibitor parthenolide restores ICI 182,780 (faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant breast cancer cells. Mol Cancer Ther 4(1):33–41

    Article  CAS  PubMed  Google Scholar 

  197. deGraffenried LA, Chandrasekar B, Friedrichs WE, Donzis E, Silva J, Hidalgo M, Freeman JW, Weiss GR (2004) NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen. Ann Oncol 15(6):885–890

    Article  CAS  PubMed  Google Scholar 

  198. Trinh XB, Sas L, Van Laere SJ, Prove A, Deleu I, Rasschaert M, Van de Velde H, Vinken P, Vermeulen PB, Van Dam PA, Wojtasik A, De Mesmaeker P, Tjalma WA, Dirix LY (2012) A phase II study of the combination of endocrine treatment and bortezomib in patients with endocrine-resistant metastatic breast cancer. Oncol Rep 27(3):657–663. https://doi.org/10.3892/or.2011.1562

    Article  CAS  PubMed  Google Scholar 

  199. Trocoli A, Djavaheri-Mergny M (2011) The complex interplay between autophagy and NF-kappaB signaling pathways in cancer cells. Am J Cancer Res 1(5):629–649

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Cook KL, Shajahan AN, Clarke R (2011) Autophagy and endocrine resistance in breast cancer. Expert Rev Anticancer Ther 11(8):1283–1294. https://doi.org/10.1586/era.11.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Yu X, Luo A, Liu Y, Wang S, Li Y, Shi W, Liu Z, Qu X (2015) MiR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy. Mol Cancer 14:208. https://doi.org/10.1186/s12943-015-0480-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  203. Colleoni B, Paternot S, Pita JM, Bisteau X, Coulonval K, Davis RJ, Raspe E, Roger PP (2017) JNKs function as CDK4-activating kinases by phosphorylating CDK4 and p21. Oncogene 36(30):4349–4361. https://doi.org/10.1038/onc.2017.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Thangavel C, Dean JL, Ertel A, Knudsen KE, Aldaz CM, Witkiewicz AK, Clarke R, Knudsen ES (2011) Therapeutically activating RB: reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocr Relat Cancer 18(3):333–345. https://doi.org/10.1530/ERC-10-0262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9(9):631–643. https://doi.org/10.1038/nrc2713

    Article  CAS  PubMed  Google Scholar 

  206. Butt AJ, McNeil CM, Musgrove EA, Sutherland RL (2005) Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer 12(Suppl 1):S47–S59. https://doi.org/10.1677/erc.1.00993

    Article  CAS  PubMed  Google Scholar 

  207. Shah AN, Cristofanilli M (2017) The growing role of CDK4/6 inhibitors in treating hormone receptor-positive advanced breast cancer. Curr Treat Options in Oncol 18(1):6. https://doi.org/10.1007/s11864-017-0443-7

    Article  Google Scholar 

  208. Eeckhoute J, Carroll JS, Geistlinger TR, Torres-Arzayus MI, Brown M (2006) A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev 20(18):2513–2526. https://doi.org/10.1101/gad.1446006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wilcken NR, Prall OW, Musgrove EA, Sutherland RL (1997) Inducible overexpression of cyclin D1 in breast cancer cells reverses the growth-inhibitory effects of antiestrogens. Clin Cancer Res 3(6):849–854

    CAS  PubMed  Google Scholar 

  210. Kenny FS, Hui R, Musgrove EA, Gee JM, Blamey RW, Nicholson RI, Sutherland RL, Robertson JF (1999) Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer. Clin Cancer Res 5(8):2069–2076

    CAS  PubMed  Google Scholar 

  211. Zwijsen RM, Buckle RS, Hijmans EM, Loomans CJ, Bernards R (1998) Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1. Genes Dev 12(22):3488–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Chu IM, Hengst L, Slingerland JM (2008) The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8(4):253–267. https://doi.org/10.1038/nrc2347

    Article  CAS  PubMed  Google Scholar 

  213. Perez-Tenorio G, Berglund F, Esguerra Merca A, Nordenskjold B, Rutqvist LE, Skoog L, Stal O (2006) Cytoplasmic p21WAF1/CIP1 correlates with Akt activation and poor response to tamoxifen in breast cancer. Int J Oncol 28(5):1031–1042

    CAS  PubMed  Google Scholar 

  214. Ertel A, Dean JL, Rui H, Liu C, Witkiewicz AK, Knudsen KE, Knudsen ES (2010) RB-pathway disruption in breast cancer: differential association with disease subtypes, disease-specific prognosis and therapeutic response. Cell Cycle 9(20):4153–4163. https://doi.org/10.4161/cc.9.20.13454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Miller TW, Balko JM, Fox EM, Ghazoui Z, Dunbier A, Anderson H, Dowsett M, Jiang A, Smith RA, Maira SM, Manning HC, Gonzalez-Angulo AM, Mills GB, Higham C, Chanthaphaychith S, Kuba MG, Miller WR, Shyr Y, Arteaga CL (2011) ERalpha-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discov 1(4):338–351. https://doi.org/10.1158/2159-8290.CD-11-0101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, Ginther C, Atefi M, Chen I, Fowst C, Los G, Slamon DJ (2009) PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 11(5):R77. https://doi.org/10.1186/bcr2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Cruz M, Reinert T, Cristofanilli M (2017) Emerging innovative therapeutic approaches leveraging cyclin-dependent kinase inhibitors to treat advanced breast cancer. Clin Pharmacol Ther. https://doi.org/10.1002/cpt.965

    Article  Google Scholar 

  218. Garrido-Castro AC, Goel S (2017) CDK4/6 inhibition in breast cancer: mechanisms of response and treatment failure. Curr Breast Cancer Rep 9(1):26–33. https://doi.org/10.1007/s12609-017-0232-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Liu M, Liu H, Chen J (2018) Mechanisms of the CDK4/6 inhibitor palbociclib (PD 0332991) and its future application in cancer treatment (review). Oncol Rep 39(3):901–911. https://doi.org/10.3892/or.2018.6221

    Article  PubMed  Google Scholar 

  220. Nardone A, De Angelis C, Trivedi MV, Osborne CK, Schiff R (2015) The changing role of ER in endocrine resistance. Breast 24(Suppl 2):S60–S66. https://doi.org/10.1016/j.breast.2015.07.015

    Article  PubMed  Google Scholar 

  221. Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green AR, Ali S, Chin SF, Palmieri C, Caldas C, Carroll JS (2012) Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481(7381):389–393. https://doi.org/10.1038/nature10730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Feng Q, O’Malley BW (2014) Nuclear receptor modulation--role of coregulators in selective estrogen receptor modulator (SERM) actions. Steroids 90:39–43. https://doi.org/10.1016/j.steroids.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Lonard DM, O’Malley BW (2007) Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell 27(5):691–700. https://doi.org/10.1016/j.molcel.2007.08.012

    Article  CAS  PubMed  Google Scholar 

  224. Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, Wong J, Allred DC, Clark GM, Schiff R (2003) Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95(5):353–361

    Article  CAS  PubMed  Google Scholar 

  225. Kirkegaard T, McGlynn LM, Campbell FM, Muller S, Tovey SM, Dunne B, Nielsen KV, Cooke TG, Bartlett JM (2007) Amplified in breast cancer 1 in human epidermal growth factor receptor - positive tumors of tamoxifen-treated breast cancer patients. Clin Cancer Res 13(5):1405–1411. https://doi.org/10.1158/1078-0432.CCR-06-1933

    Article  CAS  PubMed  Google Scholar 

  226. Keeton EK, Brown M (2005) Cell cycle progression stimulated by tamoxifen-bound estrogen receptor-alpha and promoter-specific effects in breast cancer cells deficient in N-CoR and SMRT. Mol Endocrinol 19(6):1543–1554. https://doi.org/10.1210/me.2004-0395

    Article  CAS  PubMed  Google Scholar 

  227. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW (1998) Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci U S A 95(6):2920–2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Tabarestani S, Ghaderian SM, Rezvani H, Mirfakhraie R (2014) Expression profiling of breast cancer patients treated with tamoxifen: prognostic or predictive significance. Med Oncol 31(4):896. https://doi.org/10.1007/s12032-014-0896-5

    Article  CAS  PubMed  Google Scholar 

  229. Xu J, Wu RC, O’Malley BW (2009) Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer 9(9):615–630. https://doi.org/10.1038/nrc2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Jeselsohn R, Cornwell M, Pun M, Buchwalter G, Nguyen M, Bango C, Huang Y, Kuang Y, Paweletz C, Fu X, Nardone A, De Angelis C, Detre S, Dodson A, Mohammed H, Carroll JS, Bowden M, Rao P, Long HW, Li F, Dowsett M, Schiff R, Brown M (2017) Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proc Natl Acad Sci U S A 114(22):E4482–E4491. https://doi.org/10.1073/pnas.1620993114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Cui J, Germer K, Wu T, Wang J, Luo J, Wang SC, Wang Q, Zhang X (2012) Cross-talk between HER2 and MED1 regulates tamoxifen resistance of human breast cancer cells. Cancer Res 72(21):5625–5634. https://doi.org/10.1158/0008-5472.CAN-12-1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Cirillo LA, Zaret KS (1999) An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol Cell 4(6):961–969

    Article  CAS  PubMed  Google Scholar 

  234. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38(11):1289–1297. https://doi.org/10.1038/ng1901

    Article  CAS  PubMed  Google Scholar 

  235. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR, Fox EA, Silver PA, Brown M (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122(1):33–43. https://doi.org/10.1016/j.cell.2005.05.008

    Article  CAS  PubMed  Google Scholar 

  236. Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M (2007) Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res 67(13):6477–6483. https://doi.org/10.1158/0008-5472.CAN-07-0746

    Article  CAS  PubMed  Google Scholar 

  237. Fu X, Jeselsohn R, Pereira R, Hollingsworth EF, Creighton CJ, Li F, Shea M, Nardone A, De Angelis C, Heiser LM, Anur P, Wang N, Grasso CS, Spellman PT, Griffith OL, Tsimelzon A, Gutierrez C, Huang S, Edwards DP, Trivedi MV, Rimawi MF, Lopez-Terrada D, Hilsenbeck SG, Gray JW, Brown M, Osborne CK, Schiff R (2016) FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci U S A 113(43):E6600–E6609. https://doi.org/10.1073/pnas.1612835113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS (2011) FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet 43(1):27–33. https://doi.org/10.1038/ng.730

    Article  CAS  PubMed  Google Scholar 

  239. Wright TM, Wardell SE, Jasper JS, Stice JP, Safi R, Nelson ER, McDonnell DP (2014) Delineation of a FOXA1/ERalpha/AGR2 regulatory loop that is dysregulated in endocrine therapy-resistant breast cancer. Mol Cancer Res 12(12):1829–1839. https://doi.org/10.1158/1541-7786.MCR-14-0195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Rheinbay E, Parasuraman P, Grimsby J, Tiao G, Engreitz JM, Kim J, Lawrence MS, Taylor-Weiner A, Rodriguez-Cuevas S, Rosenberg M, Hess J, Stewart C, Maruvka YE, Stojanov P, Cortes ML, Seepo S, Cibulskis C, Tracy A, Pugh TJ, Lee J, Zheng Z, Ellisen LW, Iafrate AJ, Boehm JS, Gabriel SB, Meyerson M, Golub TR, Baselga J, Hidalgo-Miranda A, Shioda T, Bernards A, Lander ES, Getz G (2017) Recurrent and functional regulatory mutations in breast cancer. Nature 547(7661):55–60. https://doi.org/10.1038/nature22992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Lefebvre C, Bachelot T, Filleron T, Pedrero M, Campone M, Soria JC, Massard C, Levy C, Arnedos M, Lacroix-Triki M, Garrabey J, Boursin Y, Deloger M, Fu Y, Commo F, Scott V, Lacroix L, Dieci MV, Kamal M, Dieras V, Goncalves A, Ferrerro JM, Romieu G, Vanlemmens L, Mouret Reynier MA, Thery JC, Le Du F, Guiu S, Dalenc F, Clapisson G, Bonnefoi H, Jimenez M, Le Tourneau C, Andre F (2016) Mutational profile of metastatic breast cancers: a retrospective analysis. PLoS Med 13(12):e1002201. https://doi.org/10.1371/journal.pmed.1002201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Cohen O, Kim D, Oh C, Waks A, Oliver N, Helvie K, Marini L, Rotem A, Lloyd M, Stover D, Adalsteinsson V, Freeman S, Ha G, Cibulskis C, Anderka K, Tamayo P, Johannessen C, Krop I, Garraway L, Winer E, Lin N, Wagle N (2017) Whole exome and transcriptome sequencing of resistant ER+ metastatic breast cancer. In: Proceedings of the 2016 San Antonio Breast Cancer Symposium. Cancer Res 77(4 Suppl):Abstract nr S1-01

    Article  Google Scholar 

  243. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, Srinivasan P, Gao J, Chakravarty D, Devlin SM, Hellmann MD, Barron DA, Schram AM, Hameed M, Dogan S, Ross DS, Hechtman JF, DeLair DF, Yao J, Mandelker DL, Cheng DT, Chandramohan R, Mohanty AS, Ptashkin RN, Jayakumaran G, Prasad M, Syed MH, Rema AB, Liu ZY, Nafa K, Borsu L, Sadowska J, Casanova J, Bacares R, Kiecka IJ, Razumova A, Son JB, Stewart L, Baldi T, Mullaney KA, Al-Ahmadie H, Vakiani E, Abeshouse AA, Penson AV, Jonsson P, Camacho N, Chang MT, Won HH, Gross BE, Kundra R, Heins ZJ, Chen HW, Phillips S, Zhang H, Wang J, Ochoa A, Wills J, Eubank M, Thomas SB, Gardos SM, Reales DN, Galle J, Durany R, Cambria R, Abida W, Cercek A, Feldman DR, Gounder MM, Hakimi AA, Harding JJ, Iyer G, Janjigian YY, Jordan EJ, Kelly CM, Lowery MA, Morris LGT, Omuro AM, Raj N, Razavi P, Shoushtari AN, Shukla N, Soumerai TE, Varghese AM, Yaeger R, Coleman J, Bochner B, Riely GJ, Saltz LB, Scher HI, Sabbatini PJ, Robson ME, Klimstra DS, Taylor BS, Baselga J, Schultz N, Hyman DM, Arcila ME, Solit DB, Ladanyi M, Berger MF (2017) Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 23(6):703–713. https://doi.org/10.1038/nm.4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Magnani L, Frige G, Gadaleta RM, Corleone G, Fabris S, Kempe MH, Vershure PJ, Barozzi I, Vircillo V, Hong SP, Perone Y, Saini M, Trumpp A, Viale G, Neri A, Ali S, Colleoni MA, Pruneri G, Minucci S (2017) Acquired CYP19A1 amplification is an early specific mechanism of aromatase inhibitor resistance in ERalpha metastatic breast cancer. Nat Genet 49(3):444–450. https://doi.org/10.1038/ng.3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Veeraraghavan J, Ma J, Hu Y, Wang XS (2016) Recurrent and pathological gene fusions in breast cancer: current advances in genomic discovery and clinical implications. Breast Cancer Res Treat 158(2):219–232. https://doi.org/10.1007/s10549-016-3876-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, He X, Liu S, Hoog J, Lu C, Ding L, Griffith OL, Miller C, Larson D, Fulton RS, Harrison M, Mooney T, McMichael JF, Luo J, Tao Y, Goncalves R, Schlosberg C, Hiken JF, Saied L, Sanchez C, Giuntoli T, Bumb C, Cooper C, Kitchens RT, Lin A, Phommaly C, Davies SR, Zhang J, Kavuri MS, McEachern D, Dong YY, Ma C, Pluard T, Naughton M, Bose R, Suresh R, McDowell R, Michel L, Aft R, Gillanders W, DeSchryver K, Wilson RK, Wang S, Mills GB, Gonzalez-Angulo A, Edwards JR, Maher C, Perou CM, Mardis ER, Ellis MJ (2013) Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep 4(6):1116–1130. https://doi.org/10.1016/j.celrep.2013.08.022

    Article  CAS  PubMed  Google Scholar 

  247. Veeraraghavan J, Tan Y, Cao XX, Kim JA, Wang X, Chamness GC, Maiti SN, Cooper LJ, Edwards DP, Contreras A, Hilsenbeck SG, Chang EC, Schiff R, Wang XS (2014) Recurrent ESR1-CCDC170 rearrangements in an aggressive subset of oestrogen receptor-positive breast cancers. Nat Commun 5:4577. https://doi.org/10.1038/ncomms5577

    Article  CAS  PubMed  Google Scholar 

  248. Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F, Gonzalez-Angulo AM, Ferrer-Lozano J, Perez-Fidalgo JA, Cristofanilli M, Gomez H, Arteaga CL, Giltnane J, Balko JM, Cronin MT, Jarosz M, Sun J, Hawryluk M, Lipson D, Otto G, Ross JS, Dvir A, Soussan-Gutman L, Wolf I, Rubinek T, Gilmore L, Schnitt S, Come SE, Pusztai L, Stephens P, Brown M, Miller VA (2014) Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res 20(7):1757–1767. https://doi.org/10.1158/1078-0432.CCR-13-2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Jia S, Miedel MT, Ngo M, Hessenius R, Chen N, Wang P, Bahreini A, Li Z, Ding Z, Shun TY, Zuckerman DM, Taylor DL, Puhalla SL, Lee AV, Oesterreich S, Stern AM (2018) Clinically observed estrogen receptor alpha mutations within the ligand-binding domain confer distinguishable phenotypes. Oncology 94(3):176–189. https://doi.org/10.1159/000485510

    Article  CAS  PubMed  Google Scholar 

  250. Merenbakh-Lamin K, Ben-Baruch N, Yeheskel A, Dvir A, Soussan-Gutman L, Jeselsohn R, Yelensky R, Brown M, Miller VA, Sarid D, Rizel S, Klein B, Rubinek T, Wolf I (2013) D538G mutation in estrogen receptor-alpha: a novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res 73(23):6856–6864. https://doi.org/10.1158/0008-5472.CAN-13-1197

    Article  CAS  PubMed  Google Scholar 

  251. Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X, Kalyana-Sundaram S, Wang R, Ning Y, Hodges L, Gursky A, Siddiqui J, Tomlins SA, Roychowdhury S, Pienta KJ, Kim SY, Roberts JS, Rae JM, Van Poznak CH, Hayes DF, Chugh R, Kunju LP, Talpaz M, Schott AF, Chinnaiyan AM (2013) Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 45(12):1446–1451. https://doi.org/10.1038/ng.2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, Li Z, Gala K, Fanning S, King TA, Hudis C, Chen D, Taran T, Hortobagyi G, Greene G, Berger M, Baselga J, Chandarlapaty S (2013) ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 45(12):1439–1445. https://doi.org/10.1038/ng.2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Katzenellenbogen JA, Mayne CG, Katzenellenbogen BS, Greene GL, Chandarlapaty S (2018) Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance. Nat Rev Cancer. https://doi.org/10.1038/s41568-018-0001-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Jeselsohn R, Bergholz JS, Pun M, Cornwell M, Liu W, Nardone A, Xiao T, Li W, Qiu X, Buchwalter G, Feiglin A, Abell-Hart K, Fei T, Rao P, Long H, Kwiatkowski N, Zhang T, Gray N, Melchers D, Houtman R, Liu XS, Cohen O, Wagle N, Winer EP, Zhao J, Brown M (2018) Allele-specific chromatin recruitment and therapeutic vulnerabilities of ESR1 activating mutations. Cancer Cell 33(2):173–186 e175. https://doi.org/10.1016/j.ccell.2018.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Jeselsohn R, Buchwalter G, De Angelis C, Brown M, Schiff R (2015) ESR1 mutations-a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol 12(10):573–583. https://doi.org/10.1038/nrclinonc.2015.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32(6):579–586. https://doi.org/10.1200/JCO.2012.45.2011

    Article  PubMed  PubMed Central  Google Scholar 

  257. Pinkerton JV, Thomas S (2014) Use of SERMs for treatment in postmenopausal women. J Steroid Biochem Mol Biol 142:142–154. https://doi.org/10.1016/j.jsbmb.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  258. Maruyama R, Choudhury S, Kowalczyk A, Bessarabova M, Beresford-Smith B, Conway T, Kaspi A, Wu Z, Nikolskaya T, Merino VF, Lo PK, Liu XS, Nikolsky Y, Sukumar S, Haviv I, Polyak K (2011) Epigenetic regulation of cell type-specific expression patterns in the human mammary epithelium. PLoS Genet 7(4):e1001369. https://doi.org/10.1371/journal.pgen.1001369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Lustberg MB, Ramaswamy B (2011) Epigenetic therapy in breast cancer. Curr Breast Cancer Rep 3(1):34–43. https://doi.org/10.1007/s12609-010-0034-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Stone A, Zotenko E, Locke WJ, Korbie D, Millar EK, Pidsley R, Stirzaker C, Graham P, Trau M, Musgrove EA, Nicholson RI, Gee JM, Clark SJ (2015) DNA methylation of oestrogen-regulated enhancers defines endocrine sensitivity in breast cancer. Nat Commun 6:7758. https://doi.org/10.1038/ncomms8758

    Article  CAS  PubMed  Google Scholar 

  261. Magnani L, Stoeck A, Zhang X, Lanczky A, Mirabella AC, Wang TL, Gyorffy B, Lupien M (2013) Genome-wide reprogramming of the chromatin landscape underlies endocrine therapy resistance in breast cancer. Proc Natl Acad Sci U S A 110(16):E1490–E1499. https://doi.org/10.1073/pnas.1219992110

    Article  PubMed  PubMed Central  Google Scholar 

  262. Nguyen VT, Barozzi I, Faronato M, Lombardo Y, Steel JH, Patel N, Darbre P, Castellano L, Gyorffy B, Woodley L, Meira A, Patten DK, Vircillo V, Periyasamy M, Ali S, Frige G, Minucci S, Coombes RC, Magnani L (2015) Differential epigenetic reprogramming in response to specific endocrine therapies promotes cholesterol biosynthesis and cellular invasion. Nat Commun 6:10044. https://doi.org/10.1038/ncomms10044

    Article  CAS  PubMed  Google Scholar 

  263. Raha P, Thomas S, Thurn KT, Park J, Munster PN (2015) Combined histone deacetylase inhibition and tamoxifen induces apoptosis in tamoxifen-resistant breast cancer models, by reversing Bcl-2 overexpression. Breast Cancer Res 17:26. https://doi.org/10.1186/s13058-015-0533-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, Miller A, Melisko M, Ismail-Khan R, Rugo H, Moasser M, Minton SE (2011) A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br J Cancer 104(12):1828–1835. https://doi.org/10.1038/bjc.2011.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Dontu G, El-Ashry D, Wicha MS (2004) Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 15(5):193–197. https://doi.org/10.1016/j.tem.2004.05.011

    Article  CAS  PubMed  Google Scholar 

  266. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A, Herschkowitz JI, Fan C, Zhang X, He X, Pavlick A, Gutierrez MC, Renshaw L, Larionov AA, Faratian D, Hilsenbeck SG, Perou CM, Lewis MT, Rosen JM, Chang JC (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A 106(33):13820–13825. https://doi.org/10.1073/pnas.0905718106

    Article  PubMed  PubMed Central  Google Scholar 

  267. Ao A, Morrison BJ, Wang H, Lopez JA, Reynolds BA, Lu J (2011) Response of estrogen receptor-positive breast cancer tumorspheres to antiestrogen treatments. PLoS One 6(4):e18810. https://doi.org/10.1371/journal.pone.0018810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Simoes BM, O’Brien CS, Eyre R, Silva A, Yu L, Sarmiento-Castro A, Alferez DG, Spence K, Santiago-Gomez A, Chemi F, Acar A, Gandhi A, Howell A, Brennan K, Ryden L, Catalano S, Ando S, Gee J, Ucar A, Sims AH, Marangoni E, Farnie G, Landberg G, Howell SJ, Clarke RB (2015) Anti-estrogen resistance in human breast tumors is driven by JAG1-NOTCH4-dependent cancer stem cell activity. Cell Rep 12(12):1968–1977. https://doi.org/10.1016/j.celrep.2015.08.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. van Vlerken LE, Kiefer CM, Morehouse C, Li Y, Groves C, Wilson SD, Yao Y, Hollingsworth RE, Hurt EM (2013) EZH2 is required for breast and pancreatic cancer stem cell maintenance and can be used as a functional cancer stem cell reporter. Stem Cells Transl Med 2(1):43–52. https://doi.org/10.5966/sctm.2012-0036

    Article  CAS  PubMed  Google Scholar 

  270. Pathiraja TN, Nayak SR, Xi Y, Jiang S, Garee JP, Edwards DP, Lee AV, Chen J, Shea MJ, Santen RJ, Gannon F, Kangaspeska S, Jelinek J, Issa JP, Richer JK, Elias A, McIlroy M, Young LS, Davidson NE, Schiff R, Li W, Oesterreich S (2014) Epigenetic reprogramming of HOXC10 in endocrine-resistant breast cancer. Sci Transl Med 6(229):229ra241. https://doi.org/10.1126/scitranslmed.3008326

    Article  CAS  Google Scholar 

  271. Wu Y, Zhang Z, Cenciarini ME, Proietti CJ, Amasino M, Hong T, Yang M, Liao Y, Chiang HC, Kaklamani VG, Jeselsohn R, Vadlamudi RK, Huang TH, Li R, De Angelis C, Fu X, Elizalde PV, Schiff R, Brown M, Xu K (2018) Tamoxifen resistance in breast cancer is regulated by the EZH2-ERalpha-GREB1 transcriptional axis. Cancer Res 78(3):671–684. https://doi.org/10.1158/0008-5472.CAN-17-1327

    Article  CAS  PubMed  Google Scholar 

  272. Muluhngwi P, Klinge CM (2015) Roles for miRNAs in endocrine resistance in breast cancer. Endocr Relat Cancer 22(5):R279–R300. https://doi.org/10.1530/ERC-15-0355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Guttilla IK, Phoenix KN, Hong X, Tirnauer JS, Claffey KP, White BA (2012) Prolonged mammosphere culture of MCF-7 cells induces an EMT and repression of the estrogen receptor by microRNAs. Breast Cancer Res Treat 132(1):75–85. https://doi.org/10.1007/s10549-011-1534-y

    Article  CAS  PubMed  Google Scholar 

  274. Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, Coppola D, Cheng JQ (2008) MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283(45):31079–31086. https://doi.org/10.1074/jbc.M806041200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Mazor T, Pankov A, Song JS, Costello JF (2016) Intratumoral heterogeneity of the epigenome. Cancer Cell 29(4):440–451. https://doi.org/10.1016/j.ccell.2016.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Tian H, Gao Z, Li H, Zhang B, Wang G, Zhang Q, Pei D, Zheng J (2015) DNA damage response--a double-edged sword in cancer prevention and cancer therapy. Cancer Lett 358(1):8–16. https://doi.org/10.1016/j.canlet.2014.12.038

    Article  CAS  PubMed  Google Scholar 

  277. Blok EJ, Derks MG, van der Hoeven JJ, van de Velde CJ, Kroep JR (2015) Extended adjuvant endocrine therapy in hormone-receptor positive early breast cancer: current and future evidence. Cancer Treat Rev 41(3):271–276. https://doi.org/10.1016/j.ctrv.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  278. Ho SM (2004) Estrogens and anti-estrogens: key mediators of prostate carcinogenesis and new therapeutic candidates. J Cell Biochem 91(3):491–503. https://doi.org/10.1002/jcb.10759

    Article  CAS  PubMed  Google Scholar 

  279. de Conti A, Tryndyak V, Churchwell MI, Melnyk S, Latendresse JR, Muskhelishvili L, Beland FA, Pogribny IP (2014) Genotoxic, epigenetic, and transcriptomic effects of tamoxifen in mouse liver. Toxicology 325:12–20. https://doi.org/10.1016/j.tox.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  280. Schiewer MJ, Knudsen KE (2016) Linking DNA damage and hormone signaling pathways in cancer. Trends Endocrinol Metab 27(4):216–225. https://doi.org/10.1016/j.tem.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Guo X, Yang C, Qian X, Lei T, Li Y, Shen H, Fu L, Xu B (2013) Estrogen receptor alpha regulates ATM expression through miRNAs in breast cancer. Clin Cancer Res 19(18):4994–5002. https://doi.org/10.1158/1078-0432.CCR-12-3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Wozniak K, Kolacinska A, Blasinska-Morawiec M, Morawiec-Bajda A, Morawiec Z, Zadrozny M, Blasiak J (2007) The DNA-damaging potential of tamoxifen in breast cancer and normal cells. Arch Toxicol 81(7):519–527. https://doi.org/10.1007/s00204-007-0188-3

    Article  CAS  PubMed  Google Scholar 

  283. Zhang F, Wang Y, Wang L, Luo X, Huang K, Wang C, Du M, Liu F, Luo T, Huang D, Huang K (2013) Poly(ADP-ribose) polymerase 1 is a key regulator of estrogen receptor alpha-dependent gene transcription. J Biol Chem 288(16):11348–11357. https://doi.org/10.1074/jbc.M112.429134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Haricharan S, Punturi N, Singh P, Holloway KR, Anurag M, Schmelz J, Schmidt C, Lei JT, Suman V, Hunt K, Olson JA Jr, Hoog J, Li S, Huang S, Edwards DP, Kavuri SM, Bainbridge MN, Ma CX, Ellis MJ (2017) Loss of MutL disrupts CHK2-dependent cell-cycle control through CDK4/6 to promote intrinsic endocrine therapy resistance in primary breast cancer. Cancer Discov 7(10):1168–1183. https://doi.org/10.1158/2159-8290.CD-16-1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Tlsty T (2008) Cancer: whispering sweet somethings. Nature 453(7195):604–605. https://doi.org/10.1038/453604a

    Article  CAS  PubMed  Google Scholar 

  286. Haslam SZ, Woodward TL (2003) Host microenvironment in breast cancer development: epithelial-cell-stromal-cell interactions and steroid hormone action in normal and cancerous mammary gland. Breast Cancer Res 5(4):208–215. https://doi.org/10.1186/bcr615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527. https://doi.org/10.1038/nm1764

    Article  CAS  PubMed  Google Scholar 

  288. Helleman J, Jansen MP, Ruigrok-Ritstier K, van Staveren IL, Look MP, Meijer-van Gelder ME, Sieuwerts AM, Klijn JG, Sleijfer S, Foekens JA, Berns EM (2008) Association of an extracellular matrix gene cluster with breast cancer prognosis and endocrine therapy response. Clin Cancer Res 14(17):5555–5564. https://doi.org/10.1158/1078-0432.CCR-08-0555

    Article  CAS  PubMed  Google Scholar 

  289. Pontiggia O, Rodriguez V, Fabris V, Raffo D, Bumaschny V, Fiszman G, de Kier Joffe EB, Simian M (2009) Establishment of an in vitro estrogen-dependent mouse mammary tumor model: a new tool to understand estrogen responsiveness and development of tamoxifen resistance in the context of stromal-epithelial interactions. Breast Cancer Res Treat 116(2):247–255. https://doi.org/10.1007/s10549-008-0113-3

    Article  CAS  PubMed  Google Scholar 

  290. Sansone P, Berishaj M, Rajasekhar VK, Ceccarelli C, Chang Q, Strillacci A, Savini C, Shapiro L, Bowman RL, Mastroleo C, De Carolis S, Daly L, Benito-Martin A, Perna F, Fabbri N, Healey JH, Spisni E, Cricca M, Lyden D, Bonafe M, Bromberg J (2017) Evolution of cancer stem-like cells in endocrine-resistant metastatic breast cancers is mediated by stromal microvesicles. Cancer Res 77(8):1927–1941. https://doi.org/10.1158/0008-5472.CAN-16-2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, Strillacci A, Stepanova A, Iommarini L, Mastroleo C, Daly L, Galkin A, Thakur BK, Soplop N, Uryu K, Hoshino A, Norton L, Bonafe M, Cricca M, Gasparre G, Lyden D, Bromberg J (2017) Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A 114(43):E9066–E9075. https://doi.org/10.1073/pnas.1704862114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Baumgarten SC, Frasor J (2012) Minireview: inflammation: an instigator of more aggressive estrogen receptor (ER) positive breast cancers. Mol Endocrinol 26(3):360–371. https://doi.org/10.1210/me.2011-1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Stender JD, Nwachukwu JC, Kastrati I, Kim Y, Strid T, Yakir M, Srinivasan S, Nowak J, Izard T, Rangarajan ES, Carlson KE, Katzenellenbogen JA, Yao XQ, Grant BJ, Leong HS, Lin CY, Frasor J, Nettles KW, Glass CK (2017) Structural and molecular mechanisms of cytokine-mediated endocrine resistance in human breast cancer cells. Mol Cell 65(6):1122–1135 e1125. https://doi.org/10.1016/j.molcel.2017.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F, Tutt AM, Gillet C, Ellis P, Ryder K, Reid JF, Daidone MG, Pierotti MA, Berns EM, Jansen MP, Foekens JA, Delorenzi M, Bontempi G, Piccart MJ, Sotiriou C (2008) Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 9:239. https://doi.org/10.1186/1471-2164-9-239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Dunbier AK, Ghazoui Z, Anderson H, Salter J, Nerurkar A, Osin P, A'Hern R, Miller WR, Smith IE, Dowsett M (2013) Molecular profiling of aromatase inhibitor-treated postmenopausal breast tumors identifies immune-related correlates of resistance. Clin Cancer Res 19(10):2775–2786. https://doi.org/10.1158/1078-0432.CCR-12-1000

    Article  CAS  PubMed  Google Scholar 

  296. Stossi F, Madak-Erdogan Z, Katzenellenbogen BS (2012) Macrophage-elicited loss of estrogen receptor-alpha in breast cancer cells via involvement of MAPK and c-Jun at the ESR1 genomic locus. Oncogene 31(14):1825–1834. https://doi.org/10.1038/onc.2011.370

    Article  CAS  PubMed  Google Scholar 

  297. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629

    CAS  PubMed  Google Scholar 

  298. Steele RJ, Eremin O, Brown M, Hawkins RA (1986) Oestrogen receptor concentration and macrophage infiltration in human breast cancer. Eur J Surg Oncol 12(3):273–276

    CAS  PubMed  Google Scholar 

  299. Mor G, Yue W, Santen RJ, Gutierrez L, Eliza M, Berstein LM, Harada N, Wang J, Lysiak J, Diano S, Naftolin F (1998) Macrophages, estrogen and the microenvironment of breast cancer. J Steroid Biochem Mol Biol 67(5–6):403–411

    Article  CAS  PubMed  Google Scholar 

  300. Hagemann T, Wilson J, Kulbe H, Li NF, Leinster DA, Charles K, Klemm F, Pukrop T, Binder C, Balkwill FR (2005) Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J Immunol 175(2):1197–1205

    Article  CAS  PubMed  Google Scholar 

  301. Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 6(3):1670–1690. https://doi.org/10.3390/cancers6031670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Rothenberger NJ, Somasundaram A, Stabile LP (2018) The role of the estrogen pathway in the tumor microenvironment. Int J Mol Sci 19(2). https://doi.org/10.3390/ijms19020611

    Article  PubMed Central  Google Scholar 

  303. Conejo-Garcia JR, Payne KK, Svoronos N (2017) Estrogens drive myeloid-derived suppressor cell accumulation. Oncoscience 4(1–2):5–6. https://doi.org/10.18632/oncoscience.340

    Article  PubMed  PubMed Central  Google Scholar 

  304. Zavadova E, Vocka M, Spacek J, Konopasek B, Fucikova T, Petruzelka L (2014) Cellular and humoral immunodeficiency in breast cancer patients resistant to hormone therapy. Neoplasma 61(1):90–98

    Article  CAS  PubMed  Google Scholar 

  305. Rugo HS, Vidula N, Ma C (2016) Improving response to hormone therapy in breast cancer: new targets, new therapeutic options. Am Soc Clin Oncol Educ Book 35:e40–e54. https://doi.org/10.14694/EDBK_159198

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from the NIH: SPORE Grants P50 CA058183 and CA186784 (to RS and CKO); Cancer Center Grant P30 CA125123; Breast Cancer Research Foundation BCRF-17-143 (to RS and CKO); and the DoD Breakthrough Award FL2 W81XWH-14-1-0326 (to XF) to support several of our research projects, the concepts and findings from which have been included in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Schiff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, X., De Angelis, C., Veeraraghavan, J., Osborne, C.K., Schiff, R. (2019). Molecular Mechanisms of Endocrine Resistance. In: Zhang, X. (eds) Estrogen Receptor and Breast Cancer. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-99350-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99350-8_11

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-99349-2

  • Online ISBN: 978-3-319-99350-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics