Abstract
Intent detection is one of the main tasks of a dialogue system. In this paper we present our intent detection system that is based on FastText word embeddings and neural network classifier. We find a significant improvement in the FastText sentence vectorization. The results show that our intent detection system provides state-of-the-art results on three English datasets outperforming many popular services.
Keywords
- Intent detection
- Dialog system
- Word embeddings
This is a preview of subscription content, access via your institution.
Buying options



Notes
- 1.
- 2.
https://github.com/snipsco/nlu-benchmark.
References
Balodis, K.: On stopword identification in dialog systems, submitted for publication
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)
Braun, D., Hernandez-Mendez, A., Matthes, F., Langen, M.: Evaluating natural language understanding services for conversational question answering systems. In: Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, pp. 174–185 (2017)
Damnati, G., Auguste, J., Nasr, A., Charlet, D., Heinecke, J., Béchet, F.: Handling normalization issues for part-of-speech tagging of online conversational text. In: Calzolari (Conference Chair), N., (eds.) Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA), Paris, France, May 2018
Deksne, D., Skadina, I.: Error-annotated corpus of Latvian. In: Baltic HLT, pp. 163–166 (2014)
Fonte, F., Carlos, J., Rial, B., Nistal, M.L.: TQ-Bot: an AIML-based tutor and evaluator bot. J. Univ. Comput. Sci. 15(7), 1486–1495 (2009)
van der Goot, R., van Noord, G.: MoNoise: modeling noise using a modular normalization system. Comput. Linguist. Neth. J. 7, 129–144 (2017)
Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vectors for 157 languages. In: Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018) (2018)
Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016)
Kalchbrenner, N., Blunsom, P.: Recurrent convolutional neural networks for discourse compositionality. arXiv preprint arXiv:1306.3584 (2013)
Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751 (2014)
Liu, B., Lane, I.: Attention-based recurrent neural network models for joint intent detection and slot filling. arXiv preprint arXiv:1609.01454 (2016)
Liu, C., Xu, P., Sarikaya, R.: Deep contextual language understanding in spoken dialogue systems. In: Sixteenth Annual Conference of the International Speech Communication Association (2015)
Lowe, R., Pow, N., Serban, I.V., Pineau, J.: The Ubuntu dialogue corpus: a large dataset for research in unstructured multi-turn dialogue systems. In: 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue, p. 285 (2015)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Náplava, J., Straka, M., Straňák, P., Hajič, J.: Diacritics restoration using neural networks. In: Calzolari (Conference Chair), N., (eds.) Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA), Paris, France, May 2018
Neves, A.M., Barros, F.A., Hodges, C.: iAIML: a mechanism to treat intentionality in AIML chatterbots. In: 18th IEEE International Conference on Tools with Artificial Intelligence 2006, ICTAI 2006, pp. 225–231. IEEE (2006)
Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, Malta, May 2010. http://is.muni.cz/publication/884893/en
Sales, J.E., Souza, L., Barzegar, S., Davis, B., Freitas, A., Handschuh, S.: Indra: A word embedding and semantic relatedness server. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA), Miyazaki, Japan, May 2018
Serban, I.V., Sordoni, A., Bengio, Y., Courville, A.C., Pineau, J.: Building end-to-end dialogue systems using generative hierarchical neural network models. In: AAAI, vol. 16, pp. 3776–3784 (2016)
Shang, L., Lu, Z., Li, H.: Neural responding machine for short-text conversation. arXiv preprint arXiv:1503.02364 (2015)
Shawar, B.A., Atwell, E.: Machine learning from dialogue corpora to generate chatbots. Expert Update J. 6(3), 25–29 (2003)
Vinyals, O., Le, Q.: A neural conversational model. arXiv preprint arXiv:1506.05869 (2015)
Wallace, R.: The Elements of AIML Style. Alice AI Foundation (2003)
Wen, T., et al.: A network-based end-to-end trainable task-oriented dialogue system. In: 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017-Proceedings of Conference, vol. 1, pp. 438–449 (2017)
Wen, T.H., Gasic, M., Mrkšić, N., Su, P.H., Vandyke, D., Young, S.: Semantically conditioned LSTM-based natural language generation for spoken dialogue systems. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1711–1721. Association for Computational Linguistics (2015). https://doi.org/10.18653/v1/D15-1199, http://www.aclweb.org/anthology/D15-1199
Xu, P., Sarikaya, R.: Convolutional neural network based triangular CRF for joint intent detection and slot filling. In: IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU) 2013, pp. 78–83. IEEE (2013)
Yang, X., Chen, Y.N., Hakkani-Tür, D., Crook, P., Li, X., Gao, J., Deng, L.: End-to-end joint learning of natural language understanding and dialogue manager. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2017, pp. 5690–5694. IEEE (2017)
Yao, K., Peng, B., Zhang, Y., Yu, D., Zweig, G., Shi, Y.: Spoken language understanding using long short-term memory neural networks. In: Spoken Language Technology Workshop (SLT), 2014 IEEE, pp. 189–194. IEEE (2014)
Acknowledgments
The research has been supported by the European Regional Development Fund within the project “Neural Network Modelling for Inflected Natural Languages” No. 1.1.1.1/16/A/215.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Balodis, K., Deksne, D. (2018). Intent Detection System Based on Word Embeddings. In: Agre, G., van Genabith, J., Declerck, T. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2018. Lecture Notes in Computer Science(), vol 11089. Springer, Cham. https://doi.org/10.1007/978-3-319-99344-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-99344-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99343-0
Online ISBN: 978-3-319-99344-7
eBook Packages: Computer ScienceComputer Science (R0)