Advertisement

Off-the-Shelf Mesenchymal Stem Cell Technology

  • Ngoc Bich Vu
  • Phuong Thi-Bich Le
  • Nhat Chau Truong
  • Phuc Van PhamEmail author
Chapter
Part of the Stem Cells in Clinical Applications book series (SCCA)

Abstract

Of all stem cells in the human body, mesenchymal stem cells (MSCs) are the most popular with regard to their potential and use in therapy. They can be easily identified and isolated from various tissues, and they can differentiate into a variety of mature cell types (bone, fat, cartilage, etc.). Unlike other adult stem cells, MSCs possess a variety of properties, such as high potential for differentiation, long-sustaining self-renewal, low expression of HLA class I and II, and, perhaps most importantly, immune modulation. With these characteristics and functions, MSCs have become widely used in the allogeneic transplantation setting in recent years. Indeed, these characteristics are the reason why MSCs has swiftly become ideal “off-the-shelf” products and used as therapeutic “drugs” (so-called stem cell drugs). The technology using off-the-shelf MSCs has unveiled a new age in regenerative medicine. It has also changed the platform of new products in the biopharmaceutical industry. In this review, the core technologies of off-the-shelf mesenchymal stem cells are presented.

Keywords

Stem cells Off-the-shelf stem cells Stem cell drug Allogenic stem cell transplantation 

Abbreviations

ADSC

Adipose derived stem cells

BM

Bone marrow

CHMP

The Committee for Medicinal Products for Human Use

GMP

Good manufacturing practice

HLA

Human leukocyte antigen

IMDM

Iscove’s Modified Dulbecco’s medium

MNC

Mononuclear cells

MSC

Mesenchymal stem cell

PRP

Platelet rich plasma

SVF

Stromal vascular fractions

UC

Umbilical cord

Notes

Acknowledgment

This research was partly funded by Ministry of Science and Technology, Vietnam under grant number DM.10.DA/15; by Fostering Innovation through Research, Science and Technology via project 15/FIRST/2a/SCI.

References

  1. Anjos-Afonso F, Bonnet D (2006) Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 109(3):1298–1306.  https://doi.org/10.1182/blood-2006-06-030551CrossRefPubMedGoogle Scholar
  2. Ansboro S, Roelofs AJ, De Bari C (2017) Mesenchymal stem cells for the management of rheumatoid arthritis. Curr Opin Rheumatol 29(2):201–207.  https://doi.org/10.1097/bor.0000000000000370CrossRefPubMedGoogle Scholar
  3. Beeravolu N, McKee C, Alamri A, Mikhael S, Brown C, Perez-Cruet M, Rasul Chaudhry G (2017) Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta. J Vis Exp 122:PMID:28447991.  https://doi.org/10.3791/55224CrossRefGoogle Scholar
  4. Berglund AK, Fortier LA, Antczak DF, Schnabel LV (2017) Immunoprivileged no more: measuring the immunogenicity of allogeneic adult mesenchymal stem cells. Stem Cell Res Ther 8(1):288.  https://doi.org/10.1186/s13287-017-0742-8CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bernacki SH, Wall ME, Loboa EG (2008) Isolation of human mesenchymal stem cells from bone and adipose tissue. Methods Cell Biol 86:257–278.  https://doi.org/10.1016/s0091-679x(08)00011-3CrossRefPubMedGoogle Scholar
  6. Bernardo ME, Avanzini MA, Perotti C, Cometa AM, Moretta A, Lenta E, Del Fante C et al (2007) Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for a fetal calf serum substitute. J Cell Physiol 211(1):121–130.  https://doi.org/10.1002/jcp.20911CrossRefPubMedGoogle Scholar
  7. Bieback K (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22(4):625–634.  https://doi.org/10.1634/stemcells.22-4-625CrossRefPubMedGoogle Scholar
  8. Bieback K, Hecker A, Kocaömer A, Lannert H, Schallmoser K, Strunk D, Klüter H (2009) Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells 27(9):2331–2341.  https://doi.org/10.1002/stem.139CrossRefPubMedGoogle Scholar
  9. Bifari F, Lisi V, Mimiola E, Pasini A, Krampera M (2008) Immune modulation by mesenchymal stem cells. Transfus Med Hemother 35(3):194–204.  https://doi.org/10.1159/000128968CrossRefPubMedPubMedCentralGoogle Scholar
  10. Blázquez-Prunera A, Díez JM, Gajardo R, Grancha S (2017) Human mesenchymal stem cells maintain their phenotype multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction. Stem Cell Res Ther 8:103.  https://doi.org/10.1186/s13287-017-0552-zCrossRefPubMedPubMedCentralGoogle Scholar
  11. Boquest AC, Shahdadfar A, Brinchmann JE, Collas P (2006) Isolation of stromal stem cells from human adipose tissue. Methods Mol Biol 325:35–46.  https://doi.org/10.1385/1-59745-005-7:35CrossRefPubMedGoogle Scholar
  12. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650CrossRefGoogle Scholar
  13. Carmelo JG, Fernandes-Platzgummer A, Diogo MM, da Silva CL, Cabral JMS (2015) A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue. Biotechnol J 10(8):1235–1247.  https://doi.org/10.1002/biot.201400586CrossRefPubMedGoogle Scholar
  14. Carter RA, Wicks IP (2001) Vascular cell adhesion molecule 1 (CD106): a multifaceted regulator of joint inflammation. Arthritis Rheum 44(5):985–994.  https://doi.org/10.1002/1529-0131(200105)44:5<985::aid-anr176>3.0.co;2-pCrossRefPubMedGoogle Scholar
  15. Davies JE, Walker JT, Keating A (2017) Concise review: Wharton’s Jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med 6:1620–1630CrossRefGoogle Scholar
  16. DelaRosa O, Lombardo E, Beraza A, Mancheño-Corvo P, Ramirez C, Menta R, Rico L et al (2009) Requirement of IFN-γ-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adiposederived stem cells. Tissue Eng A 15(10):2795–2806.  https://doi.org/10.1089/ten.tea.2008.0630CrossRefGoogle Scholar
  17. Divya MS, Roshin GE, Divya TS, Rasheed V, Santhoshkumar TR, Elizabeth KE, James J, Pillai RM (2012) Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res Ther 3(6):57.  https://doi.org/10.1186/scrt148CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. the international society for cellular therapy position statement. Cytotherapy 8:315–317CrossRefGoogle Scholar
  19. dos Santos F, Andrade PZ, Abecasis MM, Gimble JM, Chase LG, Campbell AM, Boucher S, Vemuri MC, da Silva CL, Cabral JMS (2011) Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng C Methods 17(12):1201–1210.  https://doi.org/10.1089/ten.tec.2011.0255CrossRefGoogle Scholar
  20. dos Santos F, Campbell A, Fernandes-Platzgummer A, Andrade PZ, Gimble JM, Wen Y, Boucher S, Vemuri MC, da Silva CL, Cabral JMS (2014) A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Biotechnol Bioeng 111(6):1116–1127.  https://doi.org/10.1002/bit.25187CrossRefPubMedGoogle Scholar
  21. Du YM, Zhuansun YX, Chen R, Lin L, Lin Y, Li JG (2018) Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp Cell Res 363:114–120CrossRefGoogle Scholar
  22. Ducret M, Fabre H, Degoult O, Atzeni G, McGuckin C, Forraz N, Mallein-Gerrin F, Perrier-Groult E, Fargues JC (2016) A standardized procedure to obtain mesenchymal stem/stromal cells from minimally manipulated dental pulp and Wharton’s Jelly samples. Bull Group Int Rech Sci Stomatol Odontol 53:e37PubMedGoogle Scholar
  23. English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP (2009) Cell contact prostaglandin E2and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25 highforkhead box P3+ regulatory T cells. Clin Exp Immunol 156(1):149–160.  https://doi.org/10.1111/j.1365-2249.2009.03874.xCrossRefPubMedPubMedCentralGoogle Scholar
  24. Escobar CH, Chaparro O (2016) Xeno-free extraction culture, and cryopreservation of human adipose-derived mesenchymal stem cells. Stem Cells Transl Med 5(3):358–365.  https://doi.org/10.5966/sctm.2015-0094CrossRefPubMedPubMedCentralGoogle Scholar
  25. Esmaeli A, Moshrefi M, Shamsara A, Eftekhar-Vaghefi SH, Nematollahi-Mahani SN (2016) Xeno-free culture condition for human bone marrow and umbilical cord matrix-derived mesenchymal stem/stromal cells using human umbilical cord blood serum. Int J Reprod Biomed 14:567–576CrossRefGoogle Scholar
  26. Falcon-Girard K, Fuhrmann A, Briddell R, Walters M, Foster K, Kraus M (2013) Characterization of umbilical cord blood (UCB) and umbilical cord tissue (UCT) stem cells from premature infants. Cytotherapy 15(4):S21.  https://doi.org/10.1016/j.jcyt.2013.01.077CrossRefGoogle Scholar
  27. Fekete N, Gadelorge M, Fürst D, Maurer C, Dausend J, Fleury-Cappellesso S, Mailänder V et al (2012) Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process content and identification of active components. Cytotherapy 14(5):540–554.  https://doi.org/10.3109/14653249.2012.655420CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fibbe WE, Nauta AJ, Roelofs H (2007) Modulation of immune responses by mesenchymal stem cells. Annals of the New York Academy of Sciences 1106(1):272–278.  https://doi.org/10.1196/annals.1392.025CrossRefPubMedGoogle Scholar
  29. Francis MP, Sachs PC, Elmore LW, Holt SE (2010) Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis 6:11–14CrossRefGoogle Scholar
  30. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403PubMedGoogle Scholar
  31. Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luriá EA, Ruadkow IA (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92Google Scholar
  32. Fujii S, Miura Y, Iwasa M, Yoshioka S, Fujishiro A, Sugino N, Kaneko H et al (2017) Isolation of mesenchymal stromal/stem cells from cryopreserved umbilical cord blood cells. J Clin Exp Hematop 57:1–8CrossRefGoogle Scholar
  33. Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RCR (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109(4):1743–1751.  https://doi.org/10.1182/blood-2005-11-010504CrossRefGoogle Scholar
  34. Gennery A (2016) Faculty of 1000 evaluation for efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Faculty of 1000 Ltd, London.  https://doi.org/10.3410/f.720537847.793519788CrossRefGoogle Scholar
  35. Gersh BJ (2010) A randomized double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Yearb Cardiol 2010:389–391.  https://doi.org/10.1016/s0145-4145(10)79814-2CrossRefGoogle Scholar
  36. Gottipamula S, Muttigi MS, Chaansa S, Ashwin KM, Priya N, Kolkundkar U, Raj SS, Majumdar AS, Seetharam RN (2013) Large-scale expansion of pre-isolated bone marrow mesenchymal stromal cells in serum-free conditions. J Tissue Eng Regen Med 10(2):108–119.  https://doi.org/10.1002/term.1713CrossRefPubMedGoogle Scholar
  37. Goujon E. (1869) Recherches expérimentales sur les propriétés physiologiques de la moelle des os. J Anat Physiol 6:399–412.Google Scholar
  38. Gottipamula S, Ashwin KM, Muttigi MS, Kannan S, Kolkundkar U, Seetharam RN (2014) Isolation expansion and characterization of bone marrow-derived mesenchymal stromal cells in serum-free conditions. Cell Tissue Res 356(1):123–135.  https://doi.org/10.1007/s00441-013-1783-7CrossRefPubMedGoogle Scholar
  39. Haack-Sørensen M, Follin B, Juhl M, Brorsen SK, Søndergaard RH, Kastrup J, Ekblond A (2016) Culture expansion of adipose derived stromal cells. A closed automated quantum cell expansion system compared with manual flask-based culture. J Transl Med 14(1):319.  https://doi.org/10.1186/s12967-016-1080-9CrossRefPubMedPubMedCentralGoogle Scholar
  40. Haack-Sørensen M, Juhl M, Follin B, Søndergaard RH, Kirchhoff M, Kastrup J, Ekblond A (2018) Development of large-scale manufacturing of adipose-derived stromal cells for clinical applications using bioreactors and human platelet lysate. Scand J Clin Lab Investig 78(4):293–300.  https://doi.org/10.1080/00365513.2018.1462082CrossRefGoogle Scholar
  41. Han KH, Ro H, Hong JH, Lee EM, Cho B, Yeom HJ, Kim M-G, Kook-Hwan O, Ahn C, Yang J (2011) Immunosuppressive mechanisms of embryonic stem cells and mesenchymal stem cells in alloimmune response. Transplant Immunol 25(1):7–15.  https://doi.org/10.1016/j.trim.2011.05.004CrossRefGoogle Scholar
  42. Han Y-F, Tao R, Sun T-J, Chai J-K, Xu G, Liu J (2013) Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods. Cytotechnology 65(5):819–827.  https://doi.org/10.1007/s10616-012-9528-0CrossRefPubMedPubMedCentralGoogle Scholar
  43. Harris D (2013) Umbilical cord tissue mesenchymal stem cells: characterization and clinical applications. Curr Stem Cell Res Ther 8(5):394–399.  https://doi.org/10.2174/1574888x11308050006CrossRefPubMedGoogle Scholar
  44. Hartmann I, Hollweck T, Haffner S, Krebs M, Meiser B, Reichart B, Eissner G (2010) Umbilical cord tissue-derived mesenchymal stem cells grow best under GMP-compliant culture conditions and maintain their phenotypic and functional properties. J Immunol Methods 363(1):80–89.  https://doi.org/10.1016/j.jim.2010.10.008CrossRefPubMedGoogle Scholar
  45. Hassan G, Kasem I, Soukkarieh C, Aljamali M (2017) A simple method to isolate and expand human umbilical cord derived mesenchymal stem cells: using explant method and umbilical cord blood serum. Int J Stem Cells 10(2):184–192.  https://doi.org/10.15283/ijsc17028CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hatlapatka T, Moretti P, Lavrentieva A, Hass R, Marquardt N, Jacobs R, Kasper C (2011) Optimization of culture conditions for the expansion of umbilical cord-derived mesenchymal stem or stromal cell-like cells using xeno-free culture conditions. Tissue Eng C Methods 17(4):485–493.  https://doi.org/10.1089/ten.tec.2010.0406CrossRefGoogle Scholar
  47. Hildebrandt C, Büth H, Thielecke H (2009) Influence of cell culture media conditions on the osteogenic differentiation of cord blood-derived mesenchymal stem cells. Ann Anat 191(1):23–32.  https://doi.org/10.1016/j.aanat.2008.09.009CrossRefPubMedGoogle Scholar
  48. Hong HS, Kim YH, Son Y (2012) Perspectives on mesenchymal stem cells: tissue repair immune modulation, and tumor homing. Arch Pharm Res 35(2):201–211.  https://doi.org/10.1007/s12272-012-0201-0CrossRefPubMedGoogle Scholar
  49. Horn P, Bork S, Diehlmann A, Walenda T, Eckstein V, Ho A, Wagner W (2008) Isolation of human mesenchymal stromal cells is more efficient by red blood cell lysis. Cytotherapy 10(7):676–685.  https://doi.org/10.1080/14653240802398845CrossRefPubMedGoogle Scholar
  50. Horn P, Bork S, Wagner W (2011) Standardized isolation of human mesenchymal stromal cells with red blood cell lysis. In: Vemuri MC (ed) Mesenchymal stem cell assays and applications. Humana, Louisville, KY, pp 23–35.  https://doi.org/10.1007/978-1-60761-999-4_3CrossRefGoogle Scholar
  51. Jarvinen L, Badri L, Wettlaufer S, Ohtsuka T, Standiford TJ, Toews GB, Pinsky DJ, Peters-Golden M, Lama VN (2008) Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. The Journal of Immunology 181(6):4389–4396.  https://doi.org/10.4049/jimmunol.181.6.4389CrossRefPubMedGoogle Scholar
  52. Jones M, Varella-Garcia M, Skokan M, Bryce S, Schowinsky J, Peters R, Vang B et al (2013) Genetic stability of bone marrow-derived human mesenchymal stromal cells in the quantum system. Cytotherapy 15(11):1323–1339.  https://doi.org/10.1016/j.jcyt.2013.05.024CrossRefPubMedPubMedCentralGoogle Scholar
  53. Jung YH, Lee S-J, Sang Yub O, Lee HJ, Ryu JM, Han HJ (2015) Oleic acid enhances the motility of umbilical cord blood derived mesenchymal stem cells through EphB2-dependent F-actin formation. Biochim Biophys Acta 1853(8):1905–1917.  https://doi.org/10.1016/j.bbamcr.2015.05.006CrossRefPubMedGoogle Scholar
  54. Kargozar S, Mozafari M, Hashemian SJ, Brouki MP, Hamzehlou S, Soleimani M, Joghataei MT et al (2018) Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: a comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton’s Jelly, and adipose tissue. J Biomed Mater Res B Appl Biomater 106:61–72CrossRefGoogle Scholar
  55. Kastrup J, Haack-Sørensen M, Juhl M, Søndergaard RH, Follin B, Lund LD, Johansen EM et al (2017) Cryopreserved off-the-shelf allogeneic adipose-derived stromal cells for therapy in patients with ischemic heart disease and heart failure—a safety study. Stem Cells Transl Med 6(11):1963–1971.  https://doi.org/10.1002/sctm.17-0040CrossRefPubMedGoogle Scholar
  56. Kim ES, Jeon HB, Lim H, Shin JH, Park SJ, Jo YK, Wonil O, Yang YS, Cho D-H, Kim J-Y (2015) Conditioned media from human umbilical cord blood-derived mesenchymal stem cells inhibits melanogenesis by promoting proteasomal degradation of MITF. PLoS One 10(5):e0128078.  https://doi.org/10.1371/journal.pone.0128078CrossRefPubMedPubMedCentralGoogle Scholar
  57. Knaän-Shanzer S (2014) Concise review: the immune status of mesenchymal stem cells and its relevance for therapeutic application. Stem Cells 32(3):603–608.  https://doi.org/10.1002/stem.1568CrossRefPubMedGoogle Scholar
  58. Koç ON, Gerson SL (2003) Mesenchymal stem cells in allogeneic transplantation. In: Allogeneic stem cell transplantation. Leukemia & Lymphoma Society, New York City, NY, pp 151–158.  https://doi.org/10.1007/978-1-59259-333-0_11CrossRefGoogle Scholar
  59. Kocaoemer A, Kern S, Klüter H, Bieback K (2007) Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 25(5):1270–1278.  https://doi.org/10.1634/stemcells.2006-0627CrossRefPubMedGoogle Scholar
  60. Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9(1):204.  https://doi.org/10.1186/ar2116CrossRefPubMedPubMedCentralGoogle Scholar
  61. Krampera M (2002) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101(9):3722–3729.  https://doi.org/10.1182/blood-2002-07-2104CrossRefPubMedGoogle Scholar
  62. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, Santarlasci V et al (2006) Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24(2):386–398.  https://doi.org/10.1634/stemcells.2005-0008CrossRefPubMedGoogle Scholar
  63. Kurtzberg J, Prasad V, Grimley MS, Horn B, Carpenter PA, Jacobsohn D, Prockop S (2010) Allogeneic human mesenchymal stem cell therapy (prochymal) as a rescue agent for severe treatment resistant GVHD in pediatric patients. Biol Blood Marrow Transplant 16(2):S169.  https://doi.org/10.1016/j.bbmt.2009.12.056CrossRefGoogle Scholar
  64. Kurtzberg J, Prockop S, Teira P, Bittencourt H, Lewis V, Chan KW, Horn B et al (2014) Allogeneic human mesenchymal stem cell therapy (remestemcel-L prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant 20(2):229–235.  https://doi.org/10.1016/j.bbmt.2013.11.001CrossRefPubMedGoogle Scholar
  65. Lange C, Cakiroglu F, Spiess A-N, Cappallo-Obermann H, Dierlamm J, Zander AR (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213(1):18–26.  https://doi.org/10.1002/jcp.21081CrossRefPubMedGoogle Scholar
  66. Lawson T, Kehoe DE, Schnitzler AC, Rapiejko PJ, Der KA, Philbrick K, Punreddy S et al (2017) Process development for expansion of human mesenchymal stromal cells in a 50L single-use stirred tank bioreactor. Biochem Eng J 120:49–62.  https://doi.org/10.1016/j.bej.2016.11.020CrossRefGoogle Scholar
  67. Le PT-B, Duong TM, Ngoc Bich V, Van Pham P (2016) Umbilical cord derived stem cell (ModulatistTM) transplantation for severe chronic obstructive pulmonary disease: a report of two cases. Biomed Res Ther 3(10):49.  https://doi.org/10.7603/s40730-016-0049-xCrossRefGoogle Scholar
  68. Lee OK (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675.  https://doi.org/10.1182/blood-2003-05-1670CrossRefPubMedGoogle Scholar
  69. Lee MW, Choi J, Yang MS, Moon YJ, Park JS, Kim HC, Kim YJ (2004) Mesenchymal stem cells from cryopreserved human umbilical cord blood. Biochem Biophys Res Commun 320(1):273–278.  https://doi.org/10.1016/j.bbrc.2004.04.206CrossRefPubMedGoogle Scholar
  70. Lee M-S, Youn C, Kim J, Park B, Ahn J, Hong S, Kim Y-D, Shin Y, Park S (2017) Enhanced cell growth of adipocyte-derived mesenchymal stem cells using chemically-defined serum-free media. Int J Mol Sci 18(8):1779.  https://doi.org/10.3390/ijms18081779CrossRefPubMedCentralGoogle Scholar
  71. Li FR, Wang XG, Deng CY, Qi H, Ren LL, Zhou HX (2010) Immune modulation of co-transplantation mesenchymal stem cells with islet on T and dendritic cells. Clin Exp Immunol 161(2):357–363.  https://doi.org/10.1111/j.1365-2249.2010.04178.xCrossRefPubMedPubMedCentralGoogle Scholar
  72. Lindroos B, Boucher S, Chase L, Kuokkanen H, Huhtala H, Haataja R, Vemuri M, Suuronen R, Miettinen S (2009) Serum-free xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy 11(7):958–972.  https://doi.org/10.3109/14653240903233081CrossRefPubMedGoogle Scholar
  73. Liu C-H, Wu M-L, Hwang S-M (2007) Optimization of serum free medium for cord blood mesenchymal stem cells. Biochem Eng J 33(1):1–9.  https://doi.org/10.1016/j.bej.2006.08.005CrossRefGoogle Scholar
  74. Martin PJ, Uberti JP, Soiffer RJ, Klingemann H, Waller EK, Daly AS, Herrmann RP, Kebriaei P (2010) Prochymal improves response rates in patients with steroid-refractory acute graft versus host disease (SR-GVHD) involving the liver and gut: results of a randomized placebo-controlled, multicenter phase III trial in GVHD. Biol Blood Marrow Transplant 16(2):S169–S170.  https://doi.org/10.1016/j.bbmt.2009.12.057CrossRefGoogle Scholar
  75. Mizukami A, Fernandes-Platzgummer A, Carmelo JG, Swiech K, Covas DT, Cabral JMS, da Silva CL (2016) Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells. Biotechnol J 11(8):1048–1059.  https://doi.org/10.1002/biot.201500532CrossRefPubMedGoogle Scholar
  76. Najima Y, Ohashi K (2017) Mesenchymal stem cells: the first approved stem cell drug in japan. J Hematopoietic Cell Transplant 6(3):125–132.  https://doi.org/10.7889/hct-16-031CrossRefGoogle Scholar
  77. Nauta AJ (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108(6):2114–2120.  https://doi.org/10.1182/blood-2005-11-011650CrossRefPubMedPubMedCentralGoogle Scholar
  78. Nold P, Brendel C, Neubauer A, Bein G, Hackstein H (2013) Good manufacturing practice-compliant animal-free expansion of human bone marrow derived mesenchymal stroma cells in a closed hollow-fiber-based bioreactor. Biochem Biophys Res Commun 430(1):325–330.  https://doi.org/10.1016/j.bbrc.2012.11.001CrossRefPubMedGoogle Scholar
  79. O’Connor SL, Sepulveda CA, Kaur I, Sumari RD, McMannis JD (2007) Characterization of BioSafe SEPAX manufactured stem cell intended for cardiac cell therapy. Blood 110:4064CrossRefGoogle Scholar
  80. Owen M (1988) Marrow stromal stem cells. J Cell Sci Suppl 10:63–76CrossRefGoogle Scholar
  81. Park YB, Ha CW, Lee CH, Yoon YC, Park YG (2017) Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl Med 6:613–621CrossRefGoogle Scholar
  82. Paula ACC, Martins TMM, Zonari A, Frade SPPJ, Angelo PC, Gomes DA, Goes AM (2015) Human adipose tissue-derived stem cells cultured in xeno-free culture condition enhance c-MYC expression increasing proliferation but bypassing spontaneous cell transformation. Stem Cell Res Ther 6(1).  https://doi.org/10.1186/s13287-015-0030-4
  83. Pérez-Ilzarbe M, Díez-Campelo M, Aranda P, Tabera S, Lopez T, del Cañizo C, Merino J et al (2009) Comparison of ex vivo expansion culture conditions of mesenchymal stem cells for human cell therapy. Transfusion 49(9):1901–1910.  https://doi.org/10.1111/j.1537-2995.2009.02226.xCrossRefPubMedGoogle Scholar
  84. Pharmacopoeia [EP] (2005) Sterility. Biological tests. In: EUROPEAN PHARMACOPOEIA 5.0, pp 145–148Google Scholar
  85. Pharmacopoeia [USP] (2011) Sterility test. In: US PHARMACOPOEIA USP29. http://pharmacopeia.cn/v29240/usp29nf24s0_c71.htmlGoogle Scholar
  86. Pieper IL, Smith R, Bishop JC, Aldalati O, Chase AJ, Morgan G, Thornton CA (2017) Isolation of mesenchymal stromal cells from peripheral blood of ST elevation myocardial infarction patients. Artif Organs 41:654–666CrossRefGoogle Scholar
  87. Pittenger MF (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147.  https://doi.org/10.1126/science.284.5411.143CrossRefGoogle Scholar
  88. Pranke P, Canabarro R (2008) Stem cells from umbilical cord blood. Front Cord Blood Sci. Springer, London, pp 27–90.  https://doi.org/10.1007/978-1-84800-167-1_3CrossRefGoogle Scholar
  89. Prasad VK, Lucas KG, Kleiner GI, Talano JAM, Jacobsohn D, Broadwater G, Monroy R, Kurtzberg J (2011) Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 17(4):534–541.  https://doi.org/10.1016/j.bbmt.2010.04.014CrossRefPubMedGoogle Scholar
  90. Prockop DJ, Sekiya I, Colter DC (2001) Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells. Cytotherapy 3(5):393–396.  https://doi.org/10.1080/146532401753277229CrossRefPubMedGoogle Scholar
  91. Pytlík R, Stehlík D, Soukup T, Kalbáčová M, Rypáček F, Trč T, Mulinková K et al (2009) The cultivation of human multipotent mesenchymal stromal cells in clinical grade medium for bone tissue engineering. Biomaterials 30(20):3415–3427.  https://doi.org/10.1016/j.biomaterials.2009.03.001CrossRefPubMedGoogle Scholar
  92. Rajala K, Lindroos B, Hussein SM, Lappalainen RS, Pekkanen-Mattila M, Inzunza J, Rozell B et al (2010) A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic induced pluripotent and adipose stem cells. PLoS ONE 5(4):e10246.  https://doi.org/10.1371/journal.pone.0010246CrossRefPubMedPubMedCentralGoogle Scholar
  93. Ranjbaran H, Abediankenari S, Mohammadi M, Jafari N, Khalilian A, Rahmani Z, Momeninezhad AM, Ebrahimi P (2018) Wharton’s Jelly derived-mesenchymal stem cells: isolation and characterization. Acta Med Iran 56:28–33PubMedGoogle Scholar
  94. Rojewski MT, Fekete N, Baila S, Nguyen K, Fürst D, Antwiler D, Dausend J et al (2013) GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed automated device quantum cell expansion system. Cell Transplant 22(11):1981–2000.  https://doi.org/10.3727/096368912x657990CrossRefPubMedGoogle Scholar
  95. Ryan JM, Barry F, Murphy JM, Mahon BP (2007) Interferon-γ does not break but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149(2):353–363.  https://doi.org/10.1111/j.1365-2249.2007.03422.xCrossRefPubMedPubMedCentralGoogle Scholar
  96. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25Google Scholar
  97. Semedo P, Correa-Costa M, Cenedeze MA, Malheiros DMAC, dos Reis MA, Shimizu MH, Seguro AC, Pacheco-Silva A, Câmara NOS (2009) Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells 27(12):3063–3073.  https://doi.org/10.1002/stem.214CrossRefPubMedGoogle Scholar
  98. Sheridan C (2018) First off-the-shelf mesenchymal stem cell therapy nears European approval. Nat Biotechnol 36:212–214CrossRefGoogle Scholar
  99. Shetty P, Bharucha K, Tanavde V (2007) Human umbilical cord blood serum can replace fetal bovine serum in the culture of mesenchymal stem cells. Cell Biol Int 31(3):293–298.  https://doi.org/10.1016/j.cellbi.2006.11.010CrossRefPubMedGoogle Scholar
  100. Smith J, Robert KP, Petry F, Powell N, Delzeit J, Weiss ML (2016) Standardizing umbilical cord mesenchymal stromal cells for translation to clinical use: selection of GMP-compliant medium and a simplified isolation method. Stem Cells Int 2016:1–14.  https://doi.org/10.1155/2016/6810980CrossRefGoogle Scholar
  101. Tavassoli M, Crosby WH (1968) Transplantation of marrow to extramedullary sites. Science, 161(3836), pp.54–56.CrossRefGoogle Scholar
  102. Tzouvelekis A, Koliakos G, Ntolios P, Baira I, Bouros E, Oikonomou A, Zissimopoulos A et al (2011) Stem cell therapy for idiopathic pulmonary fibrosis: a protocol proposal. J Transl Med 9(1):182.  https://doi.org/10.1186/1479-5876-9-182CrossRefPubMedPubMedCentralGoogle Scholar
  103. Van Pham P, Phan NK (2014) Production of good manufacturing practice-grade human umbilical cord blood-derived mesenchymal stem cells for therapeutic use. Methods Mol Biol 1283:73–85.  https://doi.org/10.1007/7651_2014_125CrossRefGoogle Scholar
  104. Van Pham P, Bui KH-T, Ngo DQ, Khuat LT, Phan NK (2013) Transplantation of nonexpanded adipose stromal vascular fraction and platelet-rich plasma for articular cartilage injury treatment in mice model. J Med Eng 2013:1–7.  https://doi.org/10.1155/2013/832396CrossRefGoogle Scholar
  105. Van Pham P, Phan NL-C, Le DM, Le PT-B, Tran TD-X, Phan NK (2014a) Good manufacturing practice-compliant isolation and culture of human bone marrow mesenchymal stem cells. Progr Stem Cell 1:56.  https://doi.org/10.15419/psc.v1i01.117CrossRefGoogle Scholar
  106. Van Pham P, Ngoc Bich V, Pham VM, Truong NH, Pham TL-B, Dang LT-T, Nguyen TT, Bui AN-T, Phan NK (2014b) Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells. J Transl Med 12(1):56.  https://doi.org/10.1186/1479-5876-12-56CrossRefPubMedPubMedCentralGoogle Scholar
  107. Van Pham P, Ngoc Bich V, Phan NL-C, Le DM, Truong NC, Truong NH, Bui KH-T, Phan NK (2014c) Good manufacturing practice-compliant isolation and culture of human adipose derived stem cells. Biomed Res Ther 1(4).  https://doi.org/10.7603/s40730-014-0021-6
  108. Van Pham P, Truong NC, Le PT-B, Tran TD-X, Ngoc Bich V, Bui KH-T, Phan NK (2015) Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications. Cell Tissue Bank 17(2):289–302.  https://doi.org/10.1007/s10561-015-9541-6CrossRefPubMedGoogle Scholar
  109. Van Pham P, Bich NV, Phan NK (2016) Umbilical cord-derived stem cells (modulatisttm) show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells. Biomed Res Ther 3(6).  https://doi.org/10.7603/s40730-016-0029-1
  110. Van PP, Truong NC, Le PT, Tran TD, Vu NB, Bui KH, Phan NK (2016) Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications. Cell Tissue Bank 17:289–302CrossRefGoogle Scholar
  111. van Vollenstee FA, Hoffmann D, Pepper MS (2016) Harvesting and collection of adipose tissue for the isolation of adipose-derived stromal/stem cells. In: Van Pham P (ed) Stem cells in clinical applications. Springer, New York, NY, pp 199–220.  https://doi.org/10.1007/978-3-319-40073-0_10CrossRefGoogle Scholar
  112. Wu X, Kang H, Liu X, Gao J, Zhao K, Ma Z (2016) Serum and xeno-free chemically defined, no-plate-coating-based culture system for mesenchymal stromal cells from the umbilical cord. Cell Proliferation 49(5):579–588.  https://doi.org/10.1111/cpr.12279CrossRefPubMedGoogle Scholar
  113. Yoo SW, Chang DY, Lee HS, Kim GH, Park JS, Ryu BY, Joe EH, Lee YD, Kim SS, Suh-Kim H (2013) Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-β. Neurobiol Dis 58:249–257CrossRefGoogle Scholar
  114. Zimmerlin L, Donnenberg VS, Pfeifer ME, Michael Meyer E, Bruno P, Peter Rubin J, Donnenberg AD (2009) Stromal vascular progenitors in adult human adipose tissue. Cytometry Part A 77(1):22–30.  https://doi.org/10.1002/cyto.a.20813CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ngoc Bich Vu
    • 1
    • 2
  • Phuong Thi-Bich Le
    • 3
  • Nhat Chau Truong
    • 1
  • Phuc Van Pham
    • 1
    • 2
    • 4
    Email author
  1. 1.Laboratory of Stem Cell Research and ApplicationVNUHCM University of ScienceHo Chi Minh CityVietnam
  2. 2.Stem Cell InstituteVNUHCM University of ScienceHo Chi Minh CityVietnam
  3. 3.Van Hanh General HospitalHo Chi Minh CityVietnam
  4. 4.Faculty of Biology-BiotechnologyVNUHCM University of ScienceHo Chi Minh CityVietnam

Personalised recommendations