Abstract
The theory of predictive processing encompasses several elements that make it attractive as the underlying computational approach for a cognitive architecture. We introduce a new cognitive architecture, Scruff, capable of implementing predictive processing models by incorporating key properties of neural networks into the Bayesian probabilistic programming framework. We illustrate the Scruff approach with conditional linear Gaussian (CLG) models, noisy-or models, and a Bayesian variation of the Rao-Ballard linear algebra model of predictive vision.
Keywords
- Probabilistic programming
- Predictive coding
This is a preview of subscription content, access via your institution.
Buying options




References
Allen, M., Friston, K.J.: From cognitivism to autopoiesis: towards a computational framework for the embodied mind. Synthese (2016). https://doi.org/10.1007/s11229-016-1288-5
Barrett, L.F.: The theory of constructed emotion: an active inference account of interoception and categorization. Soc. Cogn. Affect. Neurosci. nsw154 (2017). http://doi.org/10.1093/scan/nsw154
Barrett, L.F., Simmons, W.K.: Interoceptive predictions in the brain. Nat. Rev. Neurosci. 16(7), 419–429 (2015). https://doi.org/10.1038/nrn3950
Barsalou, L.W.: Situated conceptualization. In: Perceptual and Emotional Embodiment: Foundations of Embodied Cognition, pp. 1–11 (2015)
Chanes, L., Barrett, L.F.: Redefining the role of limbic areas in cortical processing. Trends Cogn. Sci. (2015). https://doi.org/10.1016/j.tics.2015.11.005
Deneve, S., Jardri, R.: Circular inference: mistaken belief, misplaced trust. Curr. Opin. Behav. Sci. 11, 40–48 (2016). https://doi.org/10.1016/j.cobeha.2016.04.001
Friston, K.: Hierarchical models in the brain. PLoS Comput. Biol. 4(11), e1000211 (2008)
Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010). https://doi.org/10.1038/nrn2787
Friston, K., Kiebel, S.: Predictive coding under the free-energy principle. Philos. Trans. R. Soc. B: Biol. Sci. 364(1521), 1211–1221 (2009)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al.: Generative adversarial nets. Presented at the Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Goodman, N., Mansinghka, V., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a language for generative models. ArXiv Preprint arXiv:1206.3255 (2012)
Heckerman, D., Breese, J.S.: Causal independence for probability assessment and inference using Bayesian networks. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 26(6), 826–831 (1996)
Hohwy, J.: The Predictive Mind. Oxford University Press, Oxford (2013)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. ArXiv Preprint arXiv:1312.6114 (2013)
Koller, D., McAllester, D., Pfeffer, A.: Effective Bayesian inference for stochastic programs. In AAAI/IAAI, pp. 740–747 (1997)
Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015). https://doi.org/10.1126/science.aab3050
Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people. Behav. Brain Sci. (2017). https://doi.org/10.1017/S0140525X16001837
Lauritzen, S.L.: Propagation of probabilities, means, and variances in mixed graphical association models. J. Am. Stat. Assoc. 87(420), 1098–1108 (1992)
Le, T.A., Baydin, A.G., & Wood, F.: Inference compilation and universal probabilistic programming. ArXiv Preprint arXiv:1610.09900 (2016)
Lupyan, G., Thompson-Schill, S.L., Swingley, D.: Conceptual penetration of visual processing. Psychol. Sci. 21(5), 682–691 (2010). https://doi.org/10.1177/0956797610366099
Marcus, G.: Deep learning: a critical appraisal. ArXiv Preprint arXiv:1801.00631 (2018)
Mathys, C.: A Bayesian foundation for individual learning under uncertainty. Front. Hum. Neurosci. (2011). https://doi.org/10.3389/fnhum.2011.00039
McEliece, R.J., MacKay, D.J.C., Cheng, J.-F.: Turbo decoding as an instance of Pearl’s “belief propagation” algorithm. IEEE J. Sel. Areas Commun. 16(2), 140–152 (1998)
Morse, A.F., de Greeff, J., Belpeame, T., Cangelosi, A.: Epigenetic robotics architecture (ERA). IEEE Trans. Auton. Ment. Dev. 2(4), 325–339 (2010). https://doi.org/10.1109/TAMD.2010.2087020
Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic inference by program transformation in Hakaru (system description). In: International Symposium on Functional and Logic Programming, pp. 62–79 (2016)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Burlington (2014)
Pezzulo, G., Barca, L., Friston, K.J.: Active inference and cognitive-emotional interactions in the brain. Behav. Brain Sci. 38, 37–39 (2015)
Pfeffer, A.: 14 The design and implementation of IBAL: a general-purpose probabilistic language. In: Introduction to Statistical Relational Learning, vol. 399 (2007)
Pless, D., Luger, G.: Toward general analysis of recursive probability models. In: Uncertainty in Artificial Intelligence, pp. 429–436 (2001)
Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2(1), 79 (1999)
Rezende, D. J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. ArXiv Preprint arXiv:1401.4082 (2014)
Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind: statistics, structure, and abstraction. Science 331(6022), 1279–1285 (2011). https://doi.org/10.1126/science.1192788
Tran, D., Kucukelbir, A., Dieng, A.B., Rudolph, M., Liang, D., Blei, D. M.: Edward: a library for probabilistic modeling, inference, and criticism. ArXiv Preprint arXiv:1610.09787 (2016)
Zaki, J.: Cue integration: a common framework for social cognition and physical perception. Perspect. Psychol. Sci. 8(3), 296–312 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Pfeffer, A., Lynn, S.K. (2019). Scruff: A Deep Probabilistic Cognitive Architecture for Predictive Processing. In: Samsonovich, A. (eds) Biologically Inspired Cognitive Architectures 2018. BICA 2018. Advances in Intelligent Systems and Computing, vol 848. Springer, Cham. https://doi.org/10.1007/978-3-319-99316-4_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-99316-4_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99315-7
Online ISBN: 978-3-319-99316-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)