Skip to main content

Scruff: A Deep Probabilistic Cognitive Architecture for Predictive Processing

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 848)

Abstract

The theory of predictive processing encompasses several elements that make it attractive as the underlying computational approach for a cognitive architecture. We introduce a new cognitive architecture, Scruff, capable of implementing predictive processing models by incorporating key properties of neural networks into the Bayesian probabilistic programming framework. We illustrate the Scruff approach with conditional linear Gaussian (CLG) models, noisy-or models, and a Bayesian variation of the Rao-Ballard linear algebra model of predictive vision.

Keywords

  • Probabilistic programming
  • Predictive coding

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-99316-4_33
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-99316-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  • Allen, M., Friston, K.J.: From cognitivism to autopoiesis: towards a computational framework for the embodied mind. Synthese (2016). https://doi.org/10.1007/s11229-016-1288-5

    CrossRef  Google Scholar 

  • Barrett, L.F.: The theory of constructed emotion: an active inference account of interoception and categorization. Soc. Cogn. Affect. Neurosci. nsw154 (2017). http://doi.org/10.1093/scan/nsw154

  • Barrett, L.F., Simmons, W.K.: Interoceptive predictions in the brain. Nat. Rev. Neurosci. 16(7), 419–429 (2015). https://doi.org/10.1038/nrn3950

    CrossRef  Google Scholar 

  • Barsalou, L.W.: Situated conceptualization. In: Perceptual and Emotional Embodiment: Foundations of Embodied Cognition, pp. 1–11 (2015)

    Google Scholar 

  • Chanes, L., Barrett, L.F.: Redefining the role of limbic areas in cortical processing. Trends Cogn. Sci. (2015). https://doi.org/10.1016/j.tics.2015.11.005

    CrossRef  Google Scholar 

  • Deneve, S., Jardri, R.: Circular inference: mistaken belief, misplaced trust. Curr. Opin. Behav. Sci. 11, 40–48 (2016). https://doi.org/10.1016/j.cobeha.2016.04.001

    CrossRef  Google Scholar 

  • Friston, K.: Hierarchical models in the brain. PLoS Comput. Biol. 4(11), e1000211 (2008)

    CrossRef  MathSciNet  Google Scholar 

  • Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010). https://doi.org/10.1038/nrn2787

    CrossRef  Google Scholar 

  • Friston, K., Kiebel, S.: Predictive coding under the free-energy principle. Philos. Trans. R. Soc. B: Biol. Sci. 364(1521), 1211–1221 (2009)

    CrossRef  Google Scholar 

  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al.: Generative adversarial nets. Presented at the Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  • Goodman, N., Mansinghka, V., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a language for generative models. ArXiv Preprint arXiv:1206.3255 (2012)

  • Heckerman, D., Breese, J.S.: Causal independence for probability assessment and inference using Bayesian networks. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 26(6), 826–831 (1996)

    CrossRef  Google Scholar 

  • Hohwy, J.: The Predictive Mind. Oxford University Press, Oxford (2013)

    CrossRef  Google Scholar 

  • Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. ArXiv Preprint arXiv:1312.6114 (2013)

  • Koller, D., McAllester, D., Pfeffer, A.: Effective Bayesian inference for stochastic programs. In AAAI/IAAI, pp. 740–747 (1997)

    Google Scholar 

  • Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015). https://doi.org/10.1126/science.aab3050

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people. Behav. Brain Sci. (2017). https://doi.org/10.1017/S0140525X16001837

    CrossRef  Google Scholar 

  • Lauritzen, S.L.: Propagation of probabilities, means, and variances in mixed graphical association models. J. Am. Stat. Assoc. 87(420), 1098–1108 (1992)

    CrossRef  MathSciNet  Google Scholar 

  • Le, T.A., Baydin, A.G., & Wood, F.: Inference compilation and universal probabilistic programming. ArXiv Preprint arXiv:1610.09900 (2016)

  • Lupyan, G., Thompson-Schill, S.L., Swingley, D.: Conceptual penetration of visual processing. Psychol. Sci. 21(5), 682–691 (2010). https://doi.org/10.1177/0956797610366099

    CrossRef  Google Scholar 

  • Marcus, G.: Deep learning: a critical appraisal. ArXiv Preprint arXiv:1801.00631 (2018)

  • Mathys, C.: A Bayesian foundation for individual learning under uncertainty. Front. Hum. Neurosci. (2011). https://doi.org/10.3389/fnhum.2011.00039

    CrossRef  Google Scholar 

  • McEliece, R.J., MacKay, D.J.C., Cheng, J.-F.: Turbo decoding as an instance of Pearl’s “belief propagation” algorithm. IEEE J. Sel. Areas Commun. 16(2), 140–152 (1998)

    CrossRef  Google Scholar 

  • Morse, A.F., de Greeff, J., Belpeame, T., Cangelosi, A.: Epigenetic robotics architecture (ERA). IEEE Trans. Auton. Ment. Dev. 2(4), 325–339 (2010). https://doi.org/10.1109/TAMD.2010.2087020

    CrossRef  Google Scholar 

  • Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic inference by program transformation in Hakaru (system description). In: International Symposium on Functional and Logic Programming, pp. 62–79 (2016)

    Google Scholar 

  • Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Burlington (2014)

    MATH  Google Scholar 

  • Pezzulo, G., Barca, L., Friston, K.J.: Active inference and cognitive-emotional interactions in the brain. Behav. Brain Sci. 38, 37–39 (2015)

    CrossRef  Google Scholar 

  • Pfeffer, A.: 14 The design and implementation of IBAL: a general-purpose probabilistic language. In: Introduction to Statistical Relational Learning, vol. 399 (2007)

    Google Scholar 

  • Pless, D., Luger, G.: Toward general analysis of recursive probability models. In: Uncertainty in Artificial Intelligence, pp. 429–436 (2001)

    Google Scholar 

  • Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2(1), 79 (1999)

    CrossRef  Google Scholar 

  • Rezende, D. J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. ArXiv Preprint arXiv:1401.4082 (2014)

  • Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind: statistics, structure, and abstraction. Science 331(6022), 1279–1285 (2011). https://doi.org/10.1126/science.1192788

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Tran, D., Kucukelbir, A., Dieng, A.B., Rudolph, M., Liang, D., Blei, D. M.: Edward: a library for probabilistic modeling, inference, and criticism. ArXiv Preprint arXiv:1610.09787 (2016)

  • Zaki, J.: Cue integration: a common framework for social cognition and physical perception. Perspect. Psychol. Sci. 8(3), 296–312 (2013)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avi Pfeffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Pfeffer, A., Lynn, S.K. (2019). Scruff: A Deep Probabilistic Cognitive Architecture for Predictive Processing. In: Samsonovich, A. (eds) Biologically Inspired Cognitive Architectures 2018. BICA 2018. Advances in Intelligent Systems and Computing, vol 848. Springer, Cham. https://doi.org/10.1007/978-3-319-99316-4_33

Download citation