Skip to main content

Peptide-Based Radiopharmaceuticals for Molecular Imaging of Prostate Cancer

  • Chapter
  • First Online:
Molecular & Diagnostic Imaging in Prostate Cancer

Abstract

Given the high incidence of prostate cancer, there is a continuing need for advances in early detection and in effective treatments. Over the last several years, radiolabeled peptides have been developed, which can target receptors on prostate tumors with high affinity and specificity. These peptides are eliminated from normal tissues rapidly, producing high contrast for PET and SPECT imaging. Receptors of interest for tumor imaging include prostate specific membrane antigen (PSMA), gastrin-releasing peptide receptor (GRPR), and αvβ3 integrin. Because radiolabeled peptides afford high tumor-to-normal tissue uptake ratios, the potential of peptide-based targeted radiotherapy of prostate cancer is being explored. In addition, targeting either of two receptors with one peptide may allow more tumors to be detected and aid in the delineation of early versus advanced disease. Taken together, all these developments in peptide-based imaging and therapy of prostate cancer offer the promise of personalized, molecular medicine for individual patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howlader N et al (2016) SEER cancer statistics review, 1975–2014. National Cancer Institute, Bethesda, MD

    Google Scholar 

  2. Jayasekera J, Onukwugha E, Bikov K, Mullins CD, Seal B, Hussain A (2014) The economic burden of skeletal-related events among elderly men with metastatic prostate cancer. PharmacoEconomics 32:173–191

    CAS  PubMed  Google Scholar 

  3. Yong C, Onukwugha E, Mullins CD (2014) Clinical and economic burden of bone metastasis and skeletal-related events in prostate cancer. Curr Opin Oncol 26:274–283

    PubMed  Google Scholar 

  4. Attar RM, Takimoto CH, Gottardis MM (2009) Castration-resistant prostate cancer: locking up the molecular escape routes. Clin Cancer Res 15:3251–3255

    CAS  PubMed  Google Scholar 

  5. Harris WP, Mostaghel EA, Nelson PS, Montgomery B (2009) Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol 6:76–85

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Croswell JM, Kramer BS, Crawford ED (2011) Screening for prostate cancer with PSA testing: current status and future directions. Oncology (Williston Park) 25:452–460 463

    Google Scholar 

  7. D'Amico AV (2012) Prostate-cancer mortality after PSA screening. N Engl J Med 366:2229 author reply 2230–2221

    CAS  PubMed  Google Scholar 

  8. Duffy MJ (2011) Prostate-specific antigen: does the current evidence support its use in prostate cancer screening? Ann Clin Biochem 48:310–316

    PubMed  Google Scholar 

  9. Hayes JH, Barry MJ (2014) Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA 311:1143–1149

    CAS  PubMed  Google Scholar 

  10. Henson DE, Siddiqui H, Schwartz AM (2010) Re: overdiagnosis in cancer. J Natl Cancer Inst 102:1809–1810 author reply 1810–1801

    PubMed  Google Scholar 

  11. Howrey BT, Kuo YF, Lin YL, Goodwin JS (2013) The impact of PSA screening on prostate cancer mortality and overdiagnosis of prostate cancer in the United States. J Gerontol A Biol Sci Med Sci 68:56–61

    PubMed  Google Scholar 

  12. Stampfer MJ, Jahn JL, Gann PH (2014) Further evidence that prostate-specific antigen screening reduces prostate cancer mortality. J Natl Cancer Inst 106:dju026. https://doi.org/10.1093/jnci/dju026

    Article  PubMed  Google Scholar 

  13. Zappa M et al (2014) A different method of evaluation of the ERSPC trial confirms that prostate-specific antigen testing has a significant impact on prostate cancer mortality. Eur Urol 66:401–403

    PubMed  PubMed Central  Google Scholar 

  14. Albertsen PC, Hanley JA, Barrows GH, Penson DF, Kowalczyk PD, Sanders MM, Fine J (2005) Prostate cancer and the will Rogers phenomenon. J Natl Cancer Inst 97:1248–1253

    PubMed  Google Scholar 

  15. Chan TY, Partin AW, Walsh PC, Epstein JI (2000) Prognostic significance of Gleason score 3+4 versus Gleason score 4+3 tumor at radical prostatectomy. Urology 56:823–827

    CAS  PubMed  Google Scholar 

  16. Thompson IM, Canby-Hagino E, Lucia MS (2005) Stage migration and grade inflation in prostate cancer: will Rogers meets garrison Keillor. J Natl Cancer Inst 97:1236–1237

    PubMed  Google Scholar 

  17. Albertsen PC, Moore DF, Shih W, Lin Y, Li H, Lu-Yao GL (2011) Impact of comorbidity on survival among men with localized prostate cancer. J Clin Oncol 29:1335–1341

    PubMed  PubMed Central  Google Scholar 

  18. Lu-Yao GL et al (2009) Outcomes of localized prostate cancer following conservative management. JAMA 302:1202–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Prostate (2010) In: Edge S, Byrd DR, Compton CC, Fritz AG, Greene F, Trotti A (eds) AJCC cancer staging handbook, 7th edn. Springer, New York, NY, pp 457–468

    Google Scholar 

  20. Aus G, Pileblad E, Hugosson J (2002) Cryosurgical ablation of the prostate: 5-year follow-up of a prospective study. Eur Urol 42:133–138

    PubMed  Google Scholar 

  21. Chan TY, Tan PW, Tang JI (2016) Proton therapy for early stage prostate cancer: is there a case? OncoTargets Ther 9:5577–5586

    CAS  Google Scholar 

  22. Chaussy CG, Thüroff S (2017) High-intensity focused ultrasound for the treatment of prostate cancer: a review. J Endourol 31:S30–S37

    PubMed  Google Scholar 

  23. Forman JD, Zinreich E, Lee DJ, Wharam MD, Baumgardner RA, Order SE (1985) Improving the therapeutic ratio of external beam irradiation for carcinoma of the prostate. Int J Radiat Oncol Biol Phys 11:2073–2080

    CAS  PubMed  Google Scholar 

  24. Group Prostate Cancer Trialists’ Collaborative (2000) Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Lancet 355:1491–1498

    Google Scholar 

  25. Parmar H, Edwards L, Phillips RH, Allen L, Lightman SL (1987) Orchiectomy versus long-acting D-Trp-6-LHRH in advanced prostatic cancer. Br J Urol 59:248–254

    CAS  PubMed  Google Scholar 

  26. Peeling WB (1989) Phase III studies to compare goserelin (Zoladex) with orchiectomy and with diethylstilbestrol in treatment of prostatic carcinoma. Urology 33:45–52

    CAS  PubMed  Google Scholar 

  27. Ploysongsang SS, Aron BS, Shehata WM (1992) Radiation therapy in prostate cancer: whole pelvis with prostate boost or small field to prostate? Urology 40:18–26

    CAS  PubMed  Google Scholar 

  28. Sartor O, Hoskin P, Bruland OS (2013) Targeted radio-nuclide therapy of skeletal metastases. Cancer Treat Rev 39:18–26

    CAS  PubMed  Google Scholar 

  29. Tyson MD, Penson DF, Resnick MJ (2017) The comparative oncologic effectiveness of available management strategies for clinically localized prostate cancer. Urol Oncol 35:51–58

    PubMed  Google Scholar 

  30. Vale CL et al (2016) Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data. Lancet Oncol 17:243–256

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Welch HG, Albertsen PC (2009) Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986–2005. J Natl Cancer Inst 101:1325–1329

    PubMed  PubMed Central  Google Scholar 

  32. Zlotta AR et al (2013) Prevalence of prostate cancer on autopsy: cross-sectional study on unscreened Caucasian and Asian men. J Natl Cancer Inst 105:1050–1058

    CAS  PubMed  Google Scholar 

  33. O’Sullivan GJ, Carty FL, Cronin CG (2015) Imaging of bone metastasis: an update. World J Radiol 7:202–211

    PubMed  PubMed Central  Google Scholar 

  34. Iagaru AH, Mittra E, Colletti PM, Jadvar H (2016) Bone-targeted imaging and radionuclide therapy in prostate cancer. J Nucl Med 57:19S–24S

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Raval A, Dan TD, Williams NL, Pridjian A, Den RB (2016) Radioisotopes in management of metastatic prostate cancer. Indian J Urol 32:277–281

    PubMed  PubMed Central  Google Scholar 

  36. Reubi JC, Maecke HR (2008) Peptide-based probes for cancer imaging. J Nucl Med 49:1735–1738

    CAS  PubMed  Google Scholar 

  37. Behr TM, Gotthardt M, Barth A, Béhé M (2001) Imaging tumors with peptide-based radioligands. Q J Nucl Med 45:189–200

    CAS  PubMed  Google Scholar 

  38. Blok D, Feitsma RI, Vermeij P, Pauwels EJ (1999a) Peptide radiopharmaceuticals in nuclear medicine. Eur J Nucl Med 26:1511–1519

    CAS  PubMed  Google Scholar 

  39. Blum J, Handmaker H, Rinne NA (2002) Technetium labeled small peptide radiopharmaceuticals in the identification of lung cancer. Curr Pharm Des 8:1827–1836

    CAS  PubMed  Google Scholar 

  40. Blum JE, Handmaker H (2002) Small peptide radiopharmaceuticals in the imaging of acute thrombus. Curr Pharm Des 8:1815–1826

    CAS  PubMed  Google Scholar 

  41. Kwekkeboom D, Krenning EP, de Jong M (2000) Peptide receptor imaging and therapy. J Nucl Med 41:1704–1713

    CAS  PubMed  Google Scholar 

  42. Cutler CS, Smith CJ, Ehrhardt GJ, Tyler TT, Jurisson SS, Deutsch E (2000) Current and potential therapeutic uses of lanthanide radioisotopes. Cancer Biother Radiopharm 15:531–545

    CAS  PubMed  Google Scholar 

  43. Smith CJ et al (2003a) Radiochemical investigations of 177Lu-DOTA-8-Aoc-BBN[7-14]NH2: an in vitro/in vivo assessment of the targeting ability of this new radiopharmaceutical for PC-3 human prostate cancer cells. Nucl Med Biol 30:101–109

    CAS  PubMed  Google Scholar 

  44. Li WP, Smith CJ, Cutler CS, Hoffman TJ, Ketring AR, Jurisson SS (2003) Aminocarboxylate complexes and octreotide complexes with no carrier added 177Lu, 166Ho and 149Pm. Nucl Med Biol 30:241–251

    CAS  PubMed  Google Scholar 

  45. Liu S, Edwards DS (1999) 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev 99:2235–2268

    CAS  PubMed  Google Scholar 

  46. Smith CJ, Volkert WA, Hoffman TJ (2003b) Gastrin releasing peptide (GRP) receptor targeted radiopharmaceuticals: a concise update. Nucl Med Biol 30:861–868

    CAS  PubMed  Google Scholar 

  47. Smith CJ, Volkert WA, Hoffman TJ (2005) Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl Med Biol 32:733–740

    CAS  PubMed  Google Scholar 

  48. Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427

    CAS  PubMed  Google Scholar 

  49. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3:81–85

    CAS  PubMed  Google Scholar 

  50. Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP (1998) Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 82:2256–2261

    CAS  PubMed  Google Scholar 

  51. Pillai MRA, Nanabala R, Joy A, Sasikumar A, Knapp FF (2016) Radiolabeled enzyme inhibitors and binding agents targeting PSMA: effective theranostic tools for imaging and therapy of prostate cancer. Nucl Med Biol 43:692–720

    CAS  PubMed  Google Scholar 

  52. Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann CM (2012) [68Ga]gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging 39:1085–1086

    CAS  PubMed  Google Scholar 

  53. Fendler WP et al (2017) Establishing 177Lu-PSMA-617 radioligand therapy in a syngeneic model of murine prostate cancer. J Nucl Med 58:1786–1792

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Afshar-Oromieh A et al (2013) PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 40:486–495

    CAS  PubMed  Google Scholar 

  55. Budäus L et al (2016) Initial experience of 68Ga-PSMA PET/CT imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur Urol 69:393–396

    PubMed  Google Scholar 

  56. Thomas L, Balmus C, Ahmadzadehfar H, Essler M, Strunk H, Bundschuh RA (2017) Assessment of bone metastases in patients with prostate cancer—a comparison between 99mTc-bone-scintigraphy and [68Ga]Ga-PSMA PET/CT. Pharmaceuticals 10:68. https://doi.org/10.3390/ph10030068

    Article  CAS  PubMed Central  Google Scholar 

  57. Markwalder R, Reubi JC (1999) Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 59:1152–1159

    CAS  PubMed  Google Scholar 

  58. Pinski J, Halmos G, Yano T, Szepeshazi K, Qin Y, Ertl T, Schally AV (1994) Inhibition of growth of MKN45 human gastric-carcinoma xenografts in nude mice by treatment with bombesin/gastrin-releasing-peptide antagonist (RC-3095) and somatostatin analogue RC-160. Int J Cancer 57:574–580

    CAS  PubMed  Google Scholar 

  59. Sun B, Schally AV, Halmos G (2000) The presence of receptors for bombesin/GRP and mRNA for three receptor subtypes in human ovarian epithelial cancers. Regul Pept 90:77–84

    CAS  PubMed  Google Scholar 

  60. Cescato R, Maina T, Nock B, Nikolopoulou A, Charalambidis D, Piccand V, Reubi JC (2008) Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med 49:318–326

    CAS  PubMed  Google Scholar 

  61. Siegfried JM, Krishnamachary N, Gaither Davis A, Gubish C, Hunt JD, Shriver SP (1999) Evidence for autocrine actions of neuromedin B and gastrin-releasing peptide in non-small cell lung cancer. Pulm Pharmacol Ther 12:291–302

    CAS  PubMed  Google Scholar 

  62. Liu Y, Karaca M, Zhang Z, Gioeli D, Earp HS, Whang YE (2010) Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases. Oncogene 29:3208–3216

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wen X, Chao C, Ives K, Hellmich MR (2011) Regulation of bombesin-stimulated cyclooxygenase-2 expression in prostate cancer cells. BMC Mol Biol 12:29. https://doi.org/10.1186/1471-2199-12-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reubi JC, Fleischmann A, Waser B, Rehmann R (2011) Concomitant vascular GRP-receptor and VEGF-receptor expression in human tumors: molecular basis for dual targeting of tumoral vasculature. Peptides 32:1457–1462

    CAS  PubMed  Google Scholar 

  65. Jensen RT, Battey JF, Spindel ER, Benya RV (2008) International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 60:1–42

    CAS  PubMed  Google Scholar 

  66. Ananias HJ, van den Heuvel MC, Helfrich W, de Jong IJ (2009) Expression of the gastrin-releasing peptide receptor, the prostate stem cell antigen and the prostate-specific membrane antigen in lymph node and bone metastases of prostate cancer. Prostate 69:1101–1108

    PubMed  Google Scholar 

  67. Liu Z, Niu G, Wang F, Chen X (2009) 68Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging. Eur J Nucl Med and Mol Imag 36:1483–1494

    CAS  Google Scholar 

  68. Anastasi A, Erspamer V, Bucci M (1972) Isolation and amino acid sequences of alytesin and bombesin, two analogous active tetradecapeptides from the skin of European discoglossid frogs. Arch Biochem Biophys 148:443–446

    CAS  PubMed  Google Scholar 

  69. Baratto L, Jadvar H, Iagaru A (2017) Prostate cancer theranostics targeting gastrin-releasing peptide receptors. Mol Imaging Biol. https://doi.org/10.1007/s11307-0171151-1

  70. Maddalena ME et al (2009) 177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and autoradiography in prostate cancer models with low GRP-R expression. J Nucl Med 50:2017–2024

    PubMed  Google Scholar 

  71. Maina T, Nock B, Mather S (2006) Targeting prostate cancer with radiolabelled bombesins. Cancer Imaging 6:153–157

    PubMed  PubMed Central  Google Scholar 

  72. Nock BA, Nikolopoulou A, Galanis A, Cordopatis P, Waser B, Reubi JC, Maina T (2005) Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: a preclinical study. J Med Chem 48:100–110

    CAS  PubMed  Google Scholar 

  73. Yu Z et al (2013) An update of radiolabeled bombesin analogs for gastrin-releasing peptide receptor targeting. Curr Pharm Des 19:3329–3341

    CAS  PubMed  Google Scholar 

  74. Zhang H, Schuhmacher J, Waser B, Wild D, Eisenhut M, Reubi JC, Maecke HR (2007) DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours. Eur J Nucl Med Mol Imaging 34:1198–1208

    PubMed  Google Scholar 

  75. Scopinaro F et al (2003) 99mTc-bombesin detects prostate cancer and invasion of pelvic lymph nodes. Eur J Nucl Med Mol Imaging 30:1378–1382

    PubMed  Google Scholar 

  76. Van de Wiele C et al (2000) Technetium-99m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: a feasibility study. Eur J Nucl Med 27:1694–1699

    PubMed  Google Scholar 

  77. Dijkgraaf I et al (2012) PET of tumors expressing gastrin-releasing peptide receptor with an 18F-labeled bombesin analog. J Nucl Med 53:947–952

    CAS  PubMed  Google Scholar 

  78. Carlucci G et al (2015) GRPR-selective PET imaging of prostate cancer using [(18F)]-lanthionine-bombesin analogs. Peptides 67:45–54

    CAS  PubMed  Google Scholar 

  79. Lane SR et al (2010) Optimization, biological evaluation and microPET imaging of 64Cu-labeled bombesin agonists, [64Cu-NO2A-(X)-BBN(7-14)NH2], in a prostate tumor xenografted mouse model. Nucl Med Biol 37:751–761

    CAS  PubMed  Google Scholar 

  80. Bass LA, Wang M, Welch MJ, Anderson CJ (2000) In vivo transchelation of 64Cu from TETA-octreotide to superoxide dismutase in rat liver. Bioconjug Chem 11:527–532

    CAS  PubMed  Google Scholar 

  81. Garrison JC, Rold TL, Sieckman GL, Figueroa SD, Volkert WA, Jurisson SS, Hoffman TJ (2007) In vivo evaluation and small-animal PET/CT of a prostate cancer mouse model using 64Cu bombesin analogs: side-by-side comparison of the CB-TE2A and DOTA chelation systems. J Nucl Med 48:1327–1337

    CAS  PubMed  Google Scholar 

  82. Shokeen M, Anderson CJ (2009) Molecular imaging of cancer with 64Cu radiopharmaceuticals and positron emission tomography (PET). Acc Chem Res 42:832–841

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mansi R et al (2009) Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res 15:5240–5249

    CAS  PubMed  Google Scholar 

  84. Mansi R et al (2011) Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours. Eur J Nucl Med Mol Imaging 38:97–107

    CAS  PubMed  Google Scholar 

  85. Gourni E et al (2014) N-terminal modifications improve the receptor affinity and pharmacokinetics of radiolabeled peptidic gastrin-releasing peptide receptor antagonists: examples of 68Ga- and 64Cu-labeled peptides for PET imaging. J Nucl Med 55:1719–1725

    CAS  PubMed  Google Scholar 

  86. Dalm SU et al (2017) 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology. J Nucl Med 58:293–299

    CAS  PubMed  Google Scholar 

  87. Chatalic KL et al (2014) Preclinical comparison of Al18F- and 68Ga-labeled gastrin-releasing peptide receptor antagonists for PET imaging of prostate cancer. J Nucl Med 55:2050–2056

    CAS  PubMed  Google Scholar 

  88. Pan D et al (2014a) A new 68Ga-labeled BBN peptide with a hydrophilic linker for GRPR-targeted tumor imaging. Amino Acids 46:1481–1489

    CAS  PubMed  Google Scholar 

  89. Pan D et al (2014b) PET imaging of prostate tumors with 18F-Al-NOTA-MATBBN contrast media. Mol Imaging 9:342–348

    CAS  Google Scholar 

  90. Yang M et al (2011) 18F-labeled GRPR agonists and antagonists: a comparative study in prostate cancer imaging. Theranostics 1:220–229

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kahkonin E et al (2013) In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res 19:5434–5443

    Google Scholar 

  92. Wieser G et al (2014) Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist – from mice to men. Theranostics 4:412–419

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wieser G et al (2017) Diagnosis of recurrent prostate cancer with PET/CT imaging using the gastrin-releasing peptide receptor antagonist 68Ga-RM2: preliminary results in patients with negative or inconclusive [18F]fluoroethylcholine-PET/CT. Eur J Nucl Med Mol Imaging 44:1463–1472

    CAS  PubMed  Google Scholar 

  94. Minamimoto R et al (2016) Pilot comparison of 68Ga-RM2 PET and 68Ga-PMSA-11 PET in patients with biochemically recurrent prostate cancer. J Nucl Med 57:557–562

    CAS  PubMed  Google Scholar 

  95. Minamimoto R, Sonni I, Hancock S, Vasanawala S, Loening A, Gambhir SS, Iagaru A (2017) Prospective evaluation of 68Ga-RM2 PET/MRI in patients with biochemical recurrence of prostate cancer and negative conventional imaging. J Nucl Med 59:803–808. https://doi.org/10.2967/jnumed.117.197624

    Article  CAS  PubMed  Google Scholar 

  96. Romanov VI, Goligorsky MS (1999) RGD-recognizing integrins mediate interactions of human prostate carcinoma cells with endothelial cells in vitro. Prostate 39:108–118

    CAS  PubMed  Google Scholar 

  97. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    CAS  PubMed  Google Scholar 

  98. Sutherland M, Gordon A, Shnyder SD, Patterson LH, Sheldrake HM (2012) RGD-binding integrins in prostate cancer: expression patterns and therapeutic prospects against bone metastasis. Cancers (Basel) 4:1106–1145

    CAS  Google Scholar 

  99. Christofori G (2003) Changing neighbours, changing behaviour: cell adhesion molecule-mediated signalling during tumour progression. EMBO J 22:2318–2323

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Cooper CR, Chay CH, Pienta KJ (2002) The role of alpha(v)beta(3) in prostate cancer progression. Neoplasia 4:191–194

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Haass NK, Smalley KS, Li L, Herlyn M (2005) Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res 18:150–159

    CAS  PubMed  Google Scholar 

  102. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    PubMed  Google Scholar 

  103. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    CAS  PubMed  Google Scholar 

  104. Pavalko FM, Otey CA (1994) Role of adhesion molecule cytoplasmic domains in mediating interactions with the cytoskeleton. Proc Soc Exp Biol Med 205:282–293

    CAS  PubMed  Google Scholar 

  105. Jackson AB et al (2012) 64Cu-NO2A-RGD-Glu-6-Ahx-BBN(7-14)NH2: a heterodimeric targeting vector for positron emission tomography imaging of prostate cancer. Nucl Med Biol 39:377–387

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Shallal HM, Minn I, Banerjee SR, Lisok A, Mease RC, Pomper MG (2014) Heterobivalent agents targeting PSMA and integrin-αvβ3. Bioconjug Chem 25:393–405

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Taylor RM, Severns V, Brown DC, Bisoffi M, Sillerud LO (2012) Prostate cancer targeting motifs: expression of ανβ3, neurotensin receptor 1, prostate specific membrane antigen, and prostate stem cell antigen in human prostate cancer cell lines and xenografts. Prostate 72:523–532

    CAS  PubMed  Google Scholar 

  108. Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA (2002) Crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg-Gly-asp ligand. Science 296:151–155

    CAS  PubMed  Google Scholar 

  109. Liu S (2006) Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Mol Pharm 3:472–487

    CAS  PubMed  Google Scholar 

  110. Shi J, Wang F, Liu S (2016) Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging. Biophys Rep 2:1–20

    PubMed  PubMed Central  Google Scholar 

  111. Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    CAS  PubMed  Google Scholar 

  112. Chen X et al (2004) 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 31:179–189

    CAS  PubMed  Google Scholar 

  113. Chen X, Plasencia C, Hou Y, Neamati N (2005) Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J Med Chem 48:1098–1106

    CAS  PubMed  Google Scholar 

  114. Kim JW, Lee HS (2004) Tumor targeting by doxorubicin-RGD-4C peptide conjugate in an orthotopic mouse hepatoma model. Int J Mol Med 14:529–535

    CAS  PubMed  Google Scholar 

  115. Wu Y et al (2005) microPET imaging of glioma integrin {alpha}v{beta}3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 46:1707–1718

    CAS  PubMed  Google Scholar 

  116. Janssen M et al (2002) Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother Radiopharm 17:641–646

    CAS  PubMed  Google Scholar 

  117. Schottelius M, Laufer B, Kessler H, Wester HJ (2009) Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res 42:969–980

    CAS  PubMed  Google Scholar 

  118. Beer AJ et al (2008) Patterns of alphavbeta3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET. J Nucl Med 49:255–259

    PubMed  Google Scholar 

  119. Blom E et al (2012) (68)Ga-labeling of RGD peptides and biodistribution. Int J Clin Exp Med 5:165–172

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Dijkgraaf I, Kruijtzer JA, Frielink C, Corstens FH, Oyen WJ, Liskamp RM, Boerman OC (2007) Alpha v beta 3 integrin-targeting of intraperitoneally growing tumors with a radiolabeled RGD peptide. Int J Cancer 120:605–610

    CAS  PubMed  Google Scholar 

  121. Dijkgraaf I et al (2013) Imaging integrin alpha-v-beta-3 expression in tumors with an 18F-labeled dimeric RGD peptide. Contrast Media Mol Imaging 8:238–245

    CAS  PubMed  Google Scholar 

  122. Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L, Chen X (2007) 64Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J Nucl Med 48:1162–1171

    CAS  PubMed  Google Scholar 

  123. Wu Z et al (2007) microPET of tumor integrin alphavbeta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4). J Nucl Med 48:1536–1544

    CAS  PubMed  Google Scholar 

  124. Andriu A, Crockett J, Dall'Angelo S, Piras M, Zanda M, Fleming IN (2018) Binding of αVβ3 integrin-specific radiotracers is modulated by both integrin expression level and activation status. Mol Imaging Biol 20:27–36

    CAS  PubMed  Google Scholar 

  125. Israel I, Richter D, Stritzker J, van Ooschot M, Donat U, Buck AK, Samnick S (2014) PET imaging with [68Ga]NOTA-RGD for prostate cancer: a comparative study with [18F]fluorodeoxyglucose and [18F]fluoroethylcholine. Curr Cancer Drug Targets 14:371–379

    CAS  PubMed  Google Scholar 

  126. Hu K et al (2015) 18F-FP-PEG2-beta-Glu-RGD2: a symmetric integrin αvβ3-targeting radiotracer for tumor PET imaging. PLoS One 10:e0138675

    PubMed  PubMed Central  Google Scholar 

  127. Cheng Z et al (2015) Ex-vivo biodistribution and micro-PET/CT imaging of 18F-FDG, 18F-FLT, 18F-FMISO, and 18F-AlF-NOTA-PRGD2 in a prostate tumor-bearing nude mouse model. Nucl Med Commun 36:914–921

    CAS  PubMed  Google Scholar 

  128. Beer AJ et al (2016) Non-invasive assessment of inter- and intrapatient variability of integrin expression in metastasized prostate cancer by PET. Oncotarget 7:28151–28159

    PubMed  PubMed Central  Google Scholar 

  129. Lantry LE et al (2006) 177Lu-AMBA: aynthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J Nucl Med 47:1144–1152

    CAS  PubMed  Google Scholar 

  130. Lantry LE et al (2004) Preclinical evaluation of 177Lu-AMBA, a DOTA conjugate that targets GRP and NMB receptor expressing tumors: internalization, in vivo biodistribution, single dose radiotherapy in PC-3 tumor-bearing nude mice and in vitro autoradiography in animal and human tissues. EANM, Helsinki

    Google Scholar 

  131. Bodei L et al (2007) 177Lu-AMBA Bombesin analogue in hormone refractory prostate cancer patients: a phase I escalation study with single-cycle administrations. In: Annual congress, European Association of Nuclear Medicine, Copenhagen, Denmark, 13–17 Oct 2007

    Google Scholar 

  132. Li ZB, Wu Z, Chen K, Ryu EK, Chen X (2008) 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J Nucl Med 49:453–461

    CAS  PubMed  Google Scholar 

  133. Zhang J et al (2017) Clinical translation of a dual integrin αvβ3- and gastrin-releasing peptide receptor-targeting PET radiotracer, 68Ga-BBN-RGD. J Nucl Med 58:228–234

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Durkan K et al (2014) A heterodimeric [RGD-Glu-[64Cu-NO2A]-6-Ahx-RM2] αvβ3/GRPr-targeting antagonist radiotracer for PET imaging of prostate tumors. Nucl Med Biol 41:133–139

    CAS  PubMed  Google Scholar 

  135. Stott Reynolds TJ et al (2015) Characterization and evaluation of DOTA-conjugated Bombesin/RGD-antagonists for prostate cancer tumor imaging and therapy. Nucl Med Biol 42:99–108

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Donald Connor for the graphic artwork depicted in Fig. 8.1, as well as Jade Jones for editorial assistance. We also acknowledge the Department of Veterans Affairs, for the use of facilities and resources at the Harry S. Truman Memorial Veterans’ Hospital in Columbia, MO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stott Reynolds, T.J., Smith, C.J., Lewis, M.R. (2018). Peptide-Based Radiopharmaceuticals for Molecular Imaging of Prostate Cancer. In: Schatten, H. (eds) Molecular & Diagnostic Imaging in Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1126. Springer, Cham. https://doi.org/10.1007/978-3-319-99286-0_8

Download citation

Publish with us

Policies and ethics