Skip to main content

Artificial Immune Systems Can Find Arbitrarily Good Approximations for the NP-Hard Partition Problem

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11102))

Included in the following conference series:

Abstract

Typical Artificial Immune System (AIS) operators such as hypermutations with mutation potential and ageing allow to efficiently overcome local optima from which Evolutionary Algorithms (EAs) struggle to escape. Such behaviour has been shown for artificial example functions such as Jump, Cliff or Trap constructed especially to show difficulties that EAs may encounter during the optimisation process. However, no evidence is available indicating that similar effects may also occur in more realistic problems. In this paper we perform an analysis for the standard NP-Hard Partition problem from combinatorial optimisation and rigorously show that hypermutations and ageing allow AISs to efficiently escape from local optima where standard EAs require exponential time. As a result we prove that while EAs and Random Local Search may get trapped on 4/3 approximations, AISs find arbitrarily good approximate solutions of ratio (\(1+\epsilon \)) for any constant \(\epsilon \) within a time that is polynomial in the problem size and exponential only in \(1/\epsilon \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A complete version of the paper including all the proofs is available on arXiv [19].

References

  1. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of 1994 IEEE Symposium on Security and Privacy, pp. 202–212 (1994)

    Google Scholar 

  2. Hedberg, S.: Combating computer viruses: IBM’s new computer immune system. IEEE Par. Dist. Tech.: Syst. Appl. 4(2), 9–11 (1996)

    Article  Google Scholar 

  3. Dasgupta, D., Majumdar, N.S.: Anomaly detection in multidimensional data using negative selection algorithm. In: Proceedings of CEC 2002, pp. 1039–1044 (2002)

    Google Scholar 

  4. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. Evol. Comp. 6(3), 239–251 (2002)

    Article  Google Scholar 

  5. Kelsey, J., Timmis, J.: Immune inspired somatic contiguous hypermutation for function optimisation. In: Cantú-Paz, E. (ed.) GECCO 2003. LNCS, vol. 2723, pp. 207–218. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_26

    Chapter  Google Scholar 

  6. Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An immune algorithm for protein structure prediction on lattice models. IEEE Trans. Evol. Comp. 11(1), 101–117 (2007)

    Article  Google Scholar 

  7. Jansen, T., Oliveto, P.S., Zarges, C.: On the analysis of the immune-inspired B-cell algorithm for the vertex cover problem. In: Liò, P., Nicosia, G., Stibor, T. (eds.) ICARIS 2011. LNCS, vol. 6825, pp. 117–131. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22371-6_13

    Chapter  Google Scholar 

  8. Jansen, T., Zarges, C.: Computing longest common subsequences with the B-cell algorithm. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia, G., Pavone, M. (eds.) ICARIS 2012. LNCS, vol. 7597, pp. 111–124. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33757-4_9

    Chapter  Google Scholar 

  9. Corus, D., Oliveto, P.S., Yazdani, D.: On the runtime analysis of the Opt-IA artificial immune system. In: Proceedings of GECCO 2017, pp. 83–90 (2017)

    Google Scholar 

  10. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of GECCO 2017, pp. 777–784 (2017)

    Google Scholar 

  11. Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based mutation-combining exploration and exploitation. In: Proceedings of CEC 2009, pp. 1455–1462 (2009)

    Google Scholar 

  12. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hillclimb faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comp. (2017)

    Google Scholar 

  13. Dang, D.-C., et al.: Emergence of diversity and its benefits for crossover in genetic algorithms. IEEE Trans. Evol. Comp. (2017, to appear)

    Google Scholar 

  14. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theor. Comp. Sci. 567, 87–104 (2015)

    Article  MathSciNet  Google Scholar 

  15. Corus, D., He, J., Jansen, T., Oliveto, P.S., Sudholt, D., Zarges, C.: On easiest functions for mutation operators in bio-inspired optimisation. Algorithmica 78(2), 714–740 (2016)

    Article  MathSciNet  Google Scholar 

  16. Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 44–56. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9_4

    Chapter  Google Scholar 

  17. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16544-3

    Book  MATH  Google Scholar 

  18. Neumann, F., Witt, C.: On the runtime of randomized local search and simple evolutionary algorithms for dynamic makespan scheduling. In: Proceedings of the 24th International Conference on Artificial Intelligence, pp. 3742–3748. AAAI Press (2015)

    Google Scholar 

  19. Corus, D., Oliveto, P.S., Yazdani, D.: Artificial immune systems can find arbitrarily good approximations for the NP-Hard partition problem. arXiv e-prints (2018). http://arxiv.org/abs/1806.00300

  20. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) evolutionary algorithm. Theor. Comp. Sci. 276(1–2), 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  21. Oliveto, P.S., Yao, X.: Runtime analysis of evolutionary algorithms for discrete optimisation. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuristics: Foundations and Recent Developments, chap. 2, pp. 21–52. World Scientific (2011)

    Google Scholar 

  22. Oliveto, P.S., Sudholt, D.: On the runtime analysis of stochastic ageing mechanisms. In: Proceedings of GECCO 2014, pp. 113–120 (2014)

    Google Scholar 

  23. Jansen, T., Zarges, C.: On the role of age diversity for effective aging operators. Evol. Intell. 4(2), 99–125 (2011)

    Article  Google Scholar 

  24. Lehre, P.K., Oliveto, P.S.: Theoretical analysis of stochastic search algorithms. In: Marti, R., Pardalos, P., Resende, M. (eds.) Handbook of Heuristics, pp. 1–36. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-07153-4_35-1

    Chapter  Google Scholar 

  25. Graham, R.: Bounds on multiprocessing timing anomalies. SIAM J. App. Maths 17, 263–269 (1969)

    MathSciNet  MATH  Google Scholar 

  26. Hochbaum, D.: Appromixation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston (1997)

    Google Scholar 

  27. Serfling, R.J.: Probability inequalities for the sum in sampling without replacement. Ann. Stat. 39–48 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dogan Corus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corus, D., Oliveto, P.S., Yazdani, D. (2018). Artificial Immune Systems Can Find Arbitrarily Good Approximations for the NP-Hard Partition Problem. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11102. Springer, Cham. https://doi.org/10.1007/978-3-319-99259-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99259-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99258-7

  • Online ISBN: 978-3-319-99259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics