Skip to main content

Bridging Elementary Landscapes and a Geometric Theory of Evolutionary Algorithms: First Steps

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11102))

Included in the following conference series:

Abstract

Based on a geometric theory of evolutionary algorithms, it was shown that all evolutionary algorithms equipped with a geometric crossover and no mutation operator do the same kind of convex search across representations, and that they are well-matched with generalised forms of concave fitness landscapes for which they provably find the optimum in polynomial time [13]. Analysing the landscape structure is essential to understand the relationship between problems and evolutionary algorithms. This paper continues such investigations by considering the following challenge: develop an analytical method to recognise that the fitness landscape for a given problem provably belongs to a class of concave fitness landscapes. Elementary landscapes theory provides analytic algebraic means to study the landscape structure [15]. This work begins linking both theories to better understand how such method could be devised using elementary landscapes. Examples on the well known One Max, Leading Ones, Not-All-Equal Satisfiability and Weight Partition problems illustrate the fundamental concepts supporting this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Extensions for non-regular and non-symmetric neighbourhoods are possible, but regular and symmetric ones will be assumed here.

  2. 2.

    The reader is referred to the Mathematica notebook publicly available online at: https://github.com/marcosdg/ppsn-2018, for the examples details.

References

  1. Bıyıkoğlu, T., Leydold, J., Stadler, P.F.: Laplacian Eigenvectors of Graphs: Perron-Frobenius and Faber-Krahn Type Theorems. Lecture Notes in Mathematics, vol. 1915. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73510-6

    Book  MATH  Google Scholar 

  2. Borenstein, Y., Moraglio, A. (eds.): Theory and Principled Methods for the Design of Metaheuristics. Natural Computing Series. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-33206-7

    Book  MATH  Google Scholar 

  3. Changat, M., et al.: Topological Representation of the Transit Sets of k-Point Crossover Operators (2017). arXiv:1712.09022

  4. Davies, E.B., Gladwell, G.M., Leydold, J., Stadler, P.F.: Discrete nodal domain theorems. Linear Algebra Appl. 336(1), 51–60 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Gitchoff, P., Wagner, G.P.: Recombination induced hypergraphs: a new approach to mutation-recombination isomorphism. Complexity 2(1), 37–43 (1996)

    Article  MathSciNet  Google Scholar 

  6. Grover, L.K.: Local search and the local structure of NP-complete problems. Oper. Res. Lett. 12(4), 235–243 (1992)

    Article  MathSciNet  Google Scholar 

  7. Kauffman, S.A.: The Origins of Order: Self-organization and Selection in Evolution. Oxford University Press, New York (1993)

    Google Scholar 

  8. Klemm, K., Stadler, P.F.: Rugged and elementary landscapes. In: Borenstein, Y., Moraglio, A. (eds.) Theory and Principled Methods for the Design of Metaheuristics. NCS, pp. 41–61. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-33206-7_3

    Chapter  Google Scholar 

  9. Menon, A. (ed.): Frontiers of Evolutionary Computation, Genetic Algorithms and Evolutionary Computation, vol. 11. Springer, New York (2004). https://doi.org/10.1007/b116128

    Book  MATH  Google Scholar 

  10. Moraglio, A.: Towards a Geometric Unification of Evolutionary Algorithms. Doctoral thesis, University of Essex, Essex, UK, November 2007

    Google Scholar 

  11. Moraglio, A.: Abstract convex evolutionary search. In: Proceedings of the 11th Workshop on Foundations of Genetic Algorithms, FOGA 2011, pp. 151–162. ACM, Schwarzenberg (2011)

    Google Scholar 

  12. Moraglio, A., Poli, R.: Inbreeding properties of geometric crossover and non-geometric recombinations. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 1–14. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6_1

    Chapter  MATH  Google Scholar 

  13. Moraglio, A., Sudholt, D.: Principled design and runtime analysis of abstract convex evolutionary search. Evol. Comput. 25(2), 205–236 (2017)

    Article  Google Scholar 

  14. Richter, H., Engelbrecht, A. (eds.): Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41888-4

    Book  Google Scholar 

  15. Stadler, P.F.: Towards a theory of landscapes. In: López-Peña, R., Waelbroeck, H., Capovilla, R., García-Pelayo, R., Zertuche, F. (eds.) Complex Systems and Binary Networks. Lecture Notes in Physics, vol. 461, pp. 78–163. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0103571

    Chapter  Google Scholar 

  16. Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics. Lecture Notes in Physics, vol. 585, pp. 183–204. Springer, Boston (2002). https://doi.org/10.1007/0-387-28356-0_19

    Chapter  Google Scholar 

  17. Stadler, P.F., Seitz, R., Wagner, G.P.: Population dependent fourier decomposition of fitness landscapes over recombination spaces: evolvability of complex characters. Bull. Math. Biol. 62(3), 399–428 (2000)

    Article  Google Scholar 

  18. Stadler, P.F., Wagner, G.P.: Algebraic theory of recombination spaces. Evol. Comput. 5(3), 241–275 (1998)

    Article  Google Scholar 

  19. Thomson, S.L., Daolio, F., Ochoa, G.: Comparing communities of optima with funnels in combinatorial fitness landscapes. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 377–384. ACM, New York (2017)

    Google Scholar 

  20. van de Vel, M.L.J.: Theory of Convex Structures. North-Holland Mathematical Library. North-Holland (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Diez García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García, M.D., Moraglio, A. (2018). Bridging Elementary Landscapes and a Geometric Theory of Evolutionary Algorithms: First Steps. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11102. Springer, Cham. https://doi.org/10.1007/978-3-319-99259-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99259-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99258-7

  • Online ISBN: 978-3-319-99259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics