Skip to main content

A Surrogate Model Based on Walsh Decomposition for Pseudo-Boolean Functions

  • Conference paper
  • First Online:
Book cover Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11102))

Included in the following conference series:

Abstract

Extensive efforts so far have been devoted to the design of effective surrogate models aiming at reducing the computational cost for solving expensive black-box continuous optimization problems. There are, however, relatively few investigations on the development of methodologies for combinatorial domains. In this work, we rely on the mathematical foundations of discrete Walsh functions in order to derive a surrogate model for pseudo-boolean optimization functions. Specifically, we model such functions by means of Walsh expansion. By conducting a comprehensive set of experiments on \(nk\)-landscapes, we provide empirical evidence on the accuracy of the proposed model. In particular, we show that a Walsh-based surrogate model can outperform the recently-proposed discrete model based on Kriging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Indeed, the matrix \((\varphi _k(x_j))_{jk}\) of dimension \(2^n \times 2^n\) is a Hadamard matrix.

  2. 2.

    Packages CEGO and LARS on CRAN: https://cran.r-project.org.

References

  1. Bartz-Beielstein, T., Zaefferer, M.: Model-based methods for continuous and discrete global optimization. Appl. Soft Comput. 55, 154–167 (2017)

    Article  Google Scholar 

  2. Bethke, A.D.: Genetic algorithms as function optimizers. Ph.D. thesis, University of Michigan (1980)

    Google Scholar 

  3. Chicano, F., Whitley, D., Alba, E.: Exact computation of the expectation surfaces for uniform crossover along with bit-flip mutation. Theor. Comput. Sci. 545, 76–93 (2014)

    Article  MathSciNet  Google Scholar 

  4. Chicano, F., Whitley, D., Ochoa, G., Tinós, R.: Optimizing one million variable NK landscapes by hybridizing deterministic recombination and local search. In: GECCO, pp. 753–760 (2017)

    Google Scholar 

  5. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)

    Article  MathSciNet  Google Scholar 

  6. Forrest, S., Mitchell, M.: What makes a problem hard for a genetic algorithm? Some anomalous results and their explanation. Mach. Learn. 13(2–3), 285–319 (1993)

    Article  Google Scholar 

  7. Forrester, A., Keane, A.: Engineering Design via Surrogate Modelling: A Practical Guide. Wiley, Hoboken (2008)

    Book  Google Scholar 

  8. Goldberg, D.E.: Genetic algorithms and walsh functions: Part I, a gentle introduction. Complex Syst. 3(2), 129–152 (1989)

    MATH  Google Scholar 

  9. Heckendorn, R.B.: Embedded landscapes. Evol. Comput. 10(4), 345–369 (2002)

    Article  Google Scholar 

  10. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

    Article  Google Scholar 

  11. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  12. Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)

    Google Scholar 

  13. Moraglio, A., Kattan, A.: Geometric generalisation of surrogate model based optimisation to combinatorial spaces. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 142–154. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20364-0_13

    Chapter  Google Scholar 

  14. Shewchuk, J.R., et al.: An introduction to the conjugate gradient method without the agonizing pain (1994)

    Google Scholar 

  15. Tibshirani, R., Wainwright, M., Hastie, T.: Statistical Learning with Sparsity: The Lasso and Generalizations. Chapman and Hall/CRC, Boca Raton (2015)

    MATH  Google Scholar 

  16. Walsh, J.L.: A closed set of normal orthogonal functions. Am. J. Math. 45(1), 5–24 (1923)

    Article  MathSciNet  Google Scholar 

  17. Zaefferer, M., Bartz-Beielstein, T.: Tabular survey: surrogate models in combinatorial optimization - version 5. Technical report, May 2017

    Google Scholar 

  18. Zaefferer, M., Stork, J., Bartz-Beielstein, T.: Distance measures for permutations in combinatorial efficient global optimization. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 373–383. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_37

    Chapter  Google Scholar 

  19. Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein, T.: Efficient global optimization for combinatorial problems. In: GECCO (2014)

    Google Scholar 

Download references

Acknowledgments

This research was partially conducted in the scope of the MOD\(\bar{\text {O}}\) International Associated Laboratory, and was partially supported by the French National Research Agency (BigMO project, ANR-16-CE23-0013-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Verel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verel, S., Derbel, B., Liefooghe, A., Aguirre, H., Tanaka, K. (2018). A Surrogate Model Based on Walsh Decomposition for Pseudo-Boolean Functions. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11102. Springer, Cham. https://doi.org/10.1007/978-3-319-99259-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99259-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99258-7

  • Online ISBN: 978-3-319-99259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics