Weaving of Metaheuristics with Cooperative Parallelism

  • Jheisson López
  • Danny Múnera
  • Daniel Diaz
  • Salvador AbreuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11101)


We propose PHYSH (Parallel HYbridization for Simple Heuristics), a framework to ease the design and implementation of hybrid metaheuristics via cooperative parallelism. With this framework, the user only needs encode each of the desired metaheuristics and may rely on PHYSH for parallelization, cooperation and hybridization. PHYSH supports the combination of population-based and single-solution metaheuristics and enables the user to control the tradeoff between intensification and diversification. We also provide an open-source implementation of this framework which we use to model the Quadratic Assignment Problem (QAP) with a hybrid solver, combining three metaheuristics. We present experimental evidence that PHYSH brings significant improvements over competing approaches, as witness the performance on representative hard instances of QAP.


  1. 1.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)CrossRefGoogle Scholar
  2. 2.
    Burkard, R.E., Karisch, S., Rendl, F.: QAPLIB - a quadratic assignment problem library. Eur. J. Oper. Res. 55(1), 115–119 (1991)CrossRefGoogle Scholar
  3. 3.
    Caniou, Y., Codognet, P., Richoux, F., Diaz, D., Abreu, S.: Large-scale parallelism for constraint-based local search: the costas array case study. Constraints 20(1), 30–56 (2015)CrossRefGoogle Scholar
  4. 4.
    Crainic, T., Gendreau, M., Hansen, P., Mladenovic, N.: Cooperative parallel variable neighborhood search for the p-median. J. Heuristics 10(3), 293–314 (2004)CrossRefGoogle Scholar
  5. 5.
    Crainic, T., Toulouse, M.: Parallel meta-heuristics. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. ISOR, vol. 146, pp. 497–541. Springer, Boston (2010). Scholar
  6. 6.
    Drezner, Z.: The extended concentric tabu for the quadratic assignment problem. Eur. J. Oper. Res. 160(2), 416–422 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Drezner, Z.: Extensive experiments with hybrid genetic algorithms for the solution of the quadratic assignment problem. Comput. Oper. Res. 35(3), 717–736 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann/Elsevier, Burlington (2004)zbMATHGoogle Scholar
  9. 9.
    Misevicius, A.: A tabu search algorithm for the quadratic assignment problem. Comput. Optim. Appl. 30(1), 95–111 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Moscato, P., Cotta, C.: Memetic algorithms. In: Handbook of Applied Optimization, vol. 157, p. 168 (2002)Google Scholar
  11. 11.
    Munera, D., Diaz, D., Abreu, S.: Hybridization as cooperative parallelism for the quadratic assignment problem. In: Blesa, M.J., et al. (eds.) HM 2016. LNCS, vol. 9668, pp. 47–61. Springer, Cham (2016). Scholar
  12. 12.
    Munera, D., Diaz, D., Abreu, S.: Solving the quadratic assignment problem with cooperative parallel extremal optimization. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 251–266. Springer, Cham (2016). Scholar
  13. 13.
    Munera, D., Diaz, D., Abreu, S., Codognet, P.: A parametric framework for cooperative parallel local search. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 13–24. Springer, Heidelberg (2014). Scholar
  14. 14.
    Munera, D., Diaz, D., Abreu, S., Codognet, P.: Flexible cooperation in parallel local search. In: Symposium on Applied Computing, SAC 2014, pp. 1360–1361. ACM Press, Gyeongju (2014)Google Scholar
  15. 15.
    Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: Solving hard stable matching problems via local search and cooperative parallelization. In: AAAI, Austin, TX, USA (2015)Google Scholar
  16. 16.
    Novoa, C., Qasem, A., Chaparala, A.: A SIMD tabu search implementation for solving the quadratic assignment problem with GPU acceleration. In: Proceedings of the 2015 XSEDE Conference on Scientific Advancements Enabled by Enhanced Cyberinfrastructure - XSEDE 2015, pp. 1–8 (2015)Google Scholar
  17. 17.
    Palubeckis, G.: An algorithm for construction of test cases for the quadratic assignment problem. Inform. Lith. Acad. Sci. 11(3), 281–296 (2000)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Saifullah Hussin, M.: Stochastic local search algorithms for single and bi-objective quadratic assignment problems. Ph.D. thesis. Université de Bruxelles (2016)Google Scholar
  19. 19.
    Taillard, É.: Robust taboo search for the quadratic assignment problem. Parallel Comput. 17(4–5), 443–455 (1991)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Talbi, E.G., Bachelet, V.: COSEARCH: a parallel cooperative metaheuristic. J. Math. Model. Algorithms 5(1), 5–22 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Toulouse, M., Crainic, T., Gendreau, M.: Communication issues in designing cooperative multi-thread parallel searches. In: Osman, I., Kelly, J. (eds.) Meta-Heuristics: Theory & Applications, pp. 501–522. Kluwer Academic Publishers, Norwell (1995)Google Scholar
  22. 22.
    Tsutsui, S., Fujimoto, N.: An analytical study of parallel GA with independent runs on GPUs. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolutionary Computation on GPGPUs. NCS, vol. 8, pp. 105–120. Springer, Heidelberg (2013). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jheisson López
    • 1
    • 2
  • Danny Múnera
    • 2
  • Daniel Diaz
    • 3
  • Salvador Abreu
    • 4
    Email author
  1. 1.National University of General SarmientoBuenos AiresArgentina
  2. 2.University of AntioquiaMedellinColombia
  3. 3.University of Paris 1/CRIParisFrance
  4. 4.University of Évora/LISPÉvoraPortugal

Personalised recommendations