Advertisement

Artificial Decision Maker Driven by PSO: An Approach for Testing Reference Point Based Interactive Methods

  • Cristóbal Barba-González
  • Vesa Ojalehto
  • José García-NietoEmail author
  • Antonio J. Nebro
  • Kaisa Miettinen
  • José F. Aldana-Montes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11101)

Abstract

Over the years, many interactive multiobjective optimization methods based on a reference point have been proposed. With a reference point, the decision maker indicates desirable objective function values to iteratively direct the solution process. However, when analyzing the performance of these methods, a critical issue is how to systematically involve decision makers. A recent approach to this problem is to replace a decision maker with an artificial one to be able to systematically evaluate and compare reference point based interactive methods in controlled experiments. In this study, a new artificial decision maker is proposed, which reuses the dynamics of particle swarm optimization for guiding the generation of consecutive reference points, hence, replacing the decision maker in preference articulation. We use the artificial decision maker to compare interactive methods. We demonstrate the artificial decision maker using the DTLZ benchmark problems with 3, 5 and 7 objectives to compare R-NSGA-II and WASF-GA as interactive methods. The experimental results show that the proposed artificial decision maker is useful and efficient. It offers an intuitive and flexible mechanism to capture the current context when testing interactive methods for decision making.

Keywords

Multiobjective optimization Preference articulation Multiple criteria decision making Particle swarm optimization 

Notes

Acknowledgements

This work was partially funded by Grants TIN2017-86049-R (Spanish MICINN) and P12-TIC-1519 (PAIDI). C. Barba-González was supported by Grant BES-2015-072209 (Spanish MICINN) and University of Jyväskylä. J. García-Nieto is the recipient Post-Doct fellowship of “Plan Propio” at Universidad de Málaga. This work was supported on the part of V. Ojalehto by the Academy of Finland (grant number 287496).

References

  1. 1.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)zbMATHGoogle Scholar
  2. 2.
    Miettinen, K., Ruiz, F., Wierzbicki, A.P.: Introduction to multiobjective optimization: interactive approaches. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 27–57. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88908-3_2CrossRefGoogle Scholar
  3. 3.
    Miettinen, K., Hakanen, J., Podkopaev, D.: Interactive nonlinear multiobjective optimization methods. In: Greco, S., Ehrgott, M., Figueira, J. (eds.) Multiple Criteria Decision Analysis. ISOR, vol. 233, pp. 931–980. Springer, New York (2016).  https://doi.org/10.1007/978-1-4939-3094-4_22CrossRefGoogle Scholar
  4. 4.
    López-Ibáñez, M., Knowles, J.: Machine decision makers as a laboratory for interactive EMO. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 295–309. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15892-1_20CrossRefGoogle Scholar
  5. 5.
    Purshouse, R.C., Deb, K., Mansor, M.M., Mostaghim, S., Wang, R.: A review of hybrid evolutionary multiple criteria decision making methods. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1147–1154 (2014)Google Scholar
  6. 6.
    Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation, and Applications. Wiley, Hoboken (1986)zbMATHGoogle Scholar
  7. 7.
    Ojalehto, V., Podkopaev, D., Miettinen, K.: Towards automatic testing of reference point based interactive methods. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 483–492. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45823-6_45CrossRefGoogle Scholar
  8. 8.
    Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, ACM pp. 635–642 (2006)Google Scholar
  9. 9.
    Ruiz, A.B., Luque, M., Miettinen, K., Saborido, R.: An interactive evolutionary multiobjective optimization method: interactive WASF-GA. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 249–263. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15892-1_17CrossRefGoogle Scholar
  10. 10.
    PSO-Central-Group: Standard PSO 2006, 2007, and 2011. Technical report, Particle Swarm Central, January 2011. http://www.particleswarm.info/
  11. 11.
    Durillo, J.J., Nebro, A.J.: jMetal: a java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)CrossRefGoogle Scholar
  12. 12.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation. vol. 1, pp. 825–830. IEEE (2002)Google Scholar
  13. 13.
    Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. Chapman & Hall/CRC, California (2007)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Cristóbal Barba-González
    • 1
  • Vesa Ojalehto
    • 2
  • José García-Nieto
    • 1
    Email author
  • Antonio J. Nebro
    • 1
    • 2
  • Kaisa Miettinen
    • 2
  • José F. Aldana-Montes
    • 1
  1. 1.Dep. Lenguajes y Ciencias de la Computación, Ada Byron Research BuildingUniversity of MálagaMálagaSpain
  2. 2.Faculty of Information TechnologyUniversity of JyvaskylaAgoraFinland

Personalised recommendations