Advertisement

GOMGE: Gene-Pool Optimal Mixing on Grammatical Evolution

  • Eric Medvet
  • Alberto Bartoli
  • Andrea De Lorenzo
  • Fabiano Tarlao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11101)

Abstract

Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is a recent Evolutionary Algorithm (EA) in which the interactions among parts of the solution (i.e., the linkage) are learned and exploited in a novel variation operator. We present GOMGE, the extension of GOMEA to Grammatical Evolution (GE), a popular EA based on an indirect representation which may be applied to any problem whose solutions can be described using a context-free grammar (CFG). GE is a general approach that does not require the user to tune the internals of the EA to fit the problem at hand: there is hence the opportunity for benefiting from the potential of GOMEA to automatically learn and exploit the linkage. We apply the proposed approach to three variants of GE differing in the representation (original GE, SGE, and WHGE) and incorporate in GOMGE two specific improvements aimed at coping with the high degeneracy of those representations. We experimentally assess GOMGE and show that, when coupled with WHGE and SGE, it is clearly beneficial to both effectiveness and efficiency, whereas it delivers mixed results with the original GE.

Keywords

Genetic programming Linkage Family of Subsets Representation 

References

  1. 1.
    Thierens, D., Bosman, P.A.: Optimal mixing evolutionary algorithms. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 617–624. ACM, New York (2011)Google Scholar
  2. 2.
    Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055930CrossRefGoogle Scholar
  3. 3.
    Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Syntactical similarity learning by means of grammatical evolution. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 260–269. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45823-6_24CrossRefGoogle Scholar
  4. 4.
    Medvet, E., Bartoli, A., Talamini, J.: Road traffic rules synthesis using grammatical evolution. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10200, pp. 173–188. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55792-2_12CrossRefGoogle Scholar
  5. 5.
    Castejón, F., Carmona, E.J.: Automatic design of analog electronic circuits using grammatical evolution. Appl. Soft Comput. 62, 1003–1018 (2018)CrossRefGoogle Scholar
  6. 6.
    Miranda, P.B., Prudêncio, R.B.: Generation of particle swarm optimization algorithms: an experimental study using grammar-guided genetic programming. Appl. Soft Comput. 60, 281–296 (2017)CrossRefGoogle Scholar
  7. 7.
    Medvet, E., Bartoli, A., Talamini, J.: Road traffic rules synthesis using grammatical evolution. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10200, pp. 173–188. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55792-2_12CrossRefGoogle Scholar
  8. 8.
    Thorhauer, A.: On the non-uniform redundancy in grammatical evolution. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 292–302. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45823-6_27CrossRefGoogle Scholar
  9. 9.
    Thorhauer, A., Rothlauf, F.: On the locality of standard search operators in grammatical evolution. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 465–475. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10762-2_46CrossRefGoogle Scholar
  10. 10.
    Medvet, E., Bartoli, A.: On the automatic design of a representation for grammar-based genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 101–117. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77553-1_7CrossRefGoogle Scholar
  11. 11.
    Whigham, P.A., Dick, G., Maclaurin, J.: On the mapping of genotype to phenotype in evolutionary algorithms. Genet. Program. Evol. Mach. 18, 1–9 (2017)CrossRefGoogle Scholar
  12. 12.
    Spector, L.: Introduction to the peer commentary special section on “on the mapping of genotype to phenotype in evolutionary algorithms” by peter a. whigham, grant dick, and james maclaurin. Genet. Program. Evol. Mach. 18(3), 351–352 (2017)CrossRefGoogle Scholar
  13. 13.
    Lourenço, N., Pereira, F.B., Costa, E.: SGE: a structured representation for grammatical evolution. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2015. LNCS, vol. 9554, pp. 136–148. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31471-6_11CrossRefGoogle Scholar
  14. 14.
    Medvet, E.: Hierarchical grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017, pp. 249–250. ACM, New York (2017)Google Scholar
  15. 15.
    Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: Scalable genetic programming by gene-pool optimal mixing and input-space entropy-based building-block learning. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1041–1048. ACM (2017)Google Scholar
  16. 16.
    Bouter, A., Alderliesten, T., Witteveen, C., Bosman, P.A.: Exploiting linkage information in real-valued optimization with the real-valued gene-pool optimal mixing evolutionary algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 705–712. ACM (2017)Google Scholar
  17. 17.
    Luong, N.H., La Poutré, H., Bosman, P.A.: Multi-objective gene-pool optimal mixing evolutionary algorithms. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 357–364. ACM (2014)Google Scholar
  18. 18.
    O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S.M., Keenan, P.: \(\pi \)grammatical evolution. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp. 617–629. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24855-2_70CrossRefGoogle Scholar
  19. 19.
    O’Neill, M., Ryan, C.: Grammatical evolution by grammatical evolution: the evolution of grammar and genetic code. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 138–149. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24650-3_13CrossRefGoogle Scholar
  20. 20.
    Wong, P.-K., Wong, M.-L., Leung, K.-S.: Hierarchical knowledge in self-improving grammar-based genetic programming. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 270–280. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45823-6_25CrossRefGoogle Scholar
  21. 21.
    He, P., Johnson, C.G., Wang, H.: Modeling grammatical evolution by automaton. Sci. China Inf. Sci. 54(12), 2544–2553 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    He, P., Deng, Z., Gao, C., Chang, L., Hu, A.: Analyzing grammatical evolution and \(\pi \)Grammatical evolution with grammar model. In: Balas, V.E., Jain, L.C., Zhao, X. (eds.) Information Technology and Intelligent Transportation Systems. AISC, vol. 455, pp. 483–489. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-38771-0_47CrossRefGoogle Scholar
  23. 23.
    Shan, Y., McKay, R.I., Baxter, R., Abbass, H., Essam, D., Nguyen, H.: Grammar model-based program evolution. In: Congress on Evolutionary Computation, CEC2004, Volume 1, pp. 478–485. IEEE (2004)Google Scholar
  24. 24.
    Shan, Y., McKay, R., Essam, D., Abbass, H.: A survey of probabilistic model building genetic programming. In: Pelikan, M., Sastry, K., CantÚPaz, E. (eds.) Scalable Optimization via Probabilistic Modeling, pp. 121–160. Springer, Heidelberg (2006).  https://doi.org/10.1007/978-3-540-34954-9_6CrossRefzbMATHGoogle Scholar
  25. 25.
    Medvet, E., Daolio, F., Tagliapietra, D.: Evolvability in grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 977–984. ACM (2017)Google Scholar
  26. 26.
    Medvet, E., Bartoli, A., Squillero, G.: An effective diversity promotion mechanism in grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 247–248. ACM (2017)Google Scholar
  27. 27.
    Thierens, D., Bosman, P.A.N.: Hierarchical problem solving with the linkage tree genetic algorithm. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 877–884. ACM (2013)Google Scholar
  28. 28.
    Gronau, I., Moran, S.: Optimal implementations of UPGMA and other common clustering algorithms. Inf. Process. Lett. 104(6), 205–210 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galván-López, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genet. Program. Evol. Mach. 12(2), 91–119 (2011)CrossRefGoogle Scholar
  30. 30.
    Vanneschi, L., Castelli, M., Manzoni, L.: The k landscapes: a tunably difficult benchmark for genetic programming. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1467–1474. ACM (2011)Google Scholar
  31. 31.
    White, D.R., Mcdermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better gp benchmarks: community survey results and proposals. Genet. Program. Evol. Mach. 14(1), 3–29 (2013)CrossRefGoogle Scholar
  32. 32.
    Squillero, G., Tonda, A.: Divergence of character and premature convergence: a survey of methodologies for promoting diversity in evolutionary optimization. Inf. Sci. 329, 782–799 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Eric Medvet
    • 1
  • Alberto Bartoli
    • 1
  • Andrea De Lorenzo
    • 1
  • Fabiano Tarlao
    • 1
  1. 1.Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly

Personalised recommendations