Skip to main content

Heavy-Tailed Mutation Operators in Single-Objective Combinatorial Optimization

  • Conference paper
  • First Online:
Book cover Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11101))

Included in the following conference series:

Abstract

A core feature of evolutionary algorithms is their mutation operator. Recently, much attention has been devoted to the study of mutation operators with dynamic and non-uniform mutation rates. Following up on this line of work, we propose a new mutation operator and analyze its performance on the (1+1) Evolutionary Algorithm (EA). Our analyses show that this mutation operator competes with pre-existing ones, when used by the (1+1) EA on classes of problems for which results on the other mutation operators are available. We present a “jump” function for which the performance of the (1+1) EA using any static uniform mutation and any restart strategy can be worse than the performance of the (1+1) EA using our mutation operator with no restarts. We show that the (1+1) EA using our mutation operator finds a (1/3)-approximation ratio on any non-negative submodular function in polynomial time. This performance matches that of combinatorial local search algorithms specifically designed to solve this problem.

Finally, we evaluate experimentally the performance of the (1+1) EA using our operator, on real-world graphs of different origins with up to \(\sim \)37 000 vertices and \(\sim \)1.6 million edges. In comparison with uniform mutation and a recently proposed dynamic scheme our operator comes out on top on these instances.

A full version of this paper is available at http://arxiv.org/abs/1805.10902.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source categories of the 67 instances: 2x bio-*, 6x ca-*, 5x ia-*, 2x inf-*, 1x soc-*, 40x socfb-*, 4x tech-*, 7x web-*. The largest graph is socfb-Texas84 with 36 364 vertices and 1 590 651 edges.

References

  1. Ageev, A.A., Sviridenko, M.: An 0.828-approximation algorithm for the uncapacitated facility location problem. Discrete Appl. Math. 93(2–3), 149–156 (1999)

    Article  MathSciNet  Google Scholar 

  2. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

    Article  Google Scholar 

  3. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: GECCO, pp. 777–784 (2017)

    Google Scholar 

  4. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoret. Comput. Sci. 276(1–2), 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  5. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

    Article  Google Scholar 

  6. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computation. Natural Computing Series. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05094-1

    Book  MATH  Google Scholar 

  7. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

    Article  MathSciNet  Google Scholar 

  8. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating covering problems by randomized search heuristics using multi-objective models. Evol. Comput. 18(4), 617–633 (2010)

    Article  Google Scholar 

  9. Friedrich, T., Neumann, F.: Maximizing submodular functions under matroid constraints by evolutionary algorithms. Evol. Comput. 23(4), 543–558 (2015)

    Article  Google Scholar 

  10. Friedrich, T., Quinzan, F., Wagner, M.: Escaping large deceptive basins of attraction with heavy mutation operators. In: GECCO (2018, accepted). https://hpi.de/friedrich/docs/paper/GECCO18.pdf

  11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  Google Scholar 

  12. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

    Article  MathSciNet  Google Scholar 

  13. Jansen, T., Wegener, I.: Real royal road functions-where crossover provably is essential. Discrete Appl. Math. 149(1–3), 111–125 (2005)

    Article  MathSciNet  Google Scholar 

  14. Krause, A., Guestrin, C.: Near-optimal observation selection using submodular functions. In: AAAI, pp. 1650–1654 (2007)

    Google Scholar 

  15. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: STOC, pp. 323–332 (2009)

    Google Scholar 

  16. Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 55(2), 270–296 (2006)

    Article  MathSciNet  Google Scholar 

  17. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: PPSN, pp. 15–26 (1992)

    Google Scholar 

  18. Rossi, R.A., Ahmed, N.K.: The Network Data Repository with Interactive Graph Analytics and Visualization (Website) (2015). http://networkrepository.com

  19. Wagner, M., Friedrich, T., Lindauer, M.: Improving local search in a minimum vertex cover solver for classes of networks. In: CEC, pp. 1704–1711 (2017)

    Google Scholar 

  20. Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 64–78. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_6

    Chapter  Google Scholar 

  21. Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 44–56. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9_4

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Martin Krejca for giving his advice on one of the proofs, and Karen Seidel for proof-reading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Göbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Friedrich, T., Göbel, A., Quinzan, F., Wagner, M. (2018). Heavy-Tailed Mutation Operators in Single-Objective Combinatorial Optimization. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99253-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99252-5

  • Online ISBN: 978-3-319-99253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics