Skip to main content

Evolutionary Search of Binary Orthogonal Arrays

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11101)

Abstract

Orthogonal Arrays (OA) represent an interesting breed of combinatorial designs that finds applications in several domains such as statistics, coding theory, and cryptography. In this work, we address the problem of constructing binary OA through evolutionary algorithms, an approach which received little attention in the combinatorial designs literature. We focus on the representation of a feasible solution, which we encode as a set of Boolean functions whose truth tables are used as the columns of a binary matrix, and on the design of an appropriate fitness function and variation operators for this problem. We finally present experimental results obtained with genetic algorithms (GA) and genetic programming (GP) on optimizing such fitness function, and compare the performances of these two metaheuristics with respect to the size of the considered problem instances. The experimental results show that GP outperforms GA at handling this type of problem, as it converges to an optimal solution in all considered problem instances but one.

Keywords

  • Orthogonal arrays
  • Genetic algorithms
  • Genetic programming
  • Boolean functions

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-99253-2_10
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-99253-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

References

  1. Carlet, C., Guilley, S.: Correlation-immune boolean functions for easing counter measures to side-channel attacks. Algebraic Curves Finite Fields: Cryptograph. Other Appl. 16, 41–70 (2014)

    MathSciNet  Google Scholar 

  2. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs. CRC Press, Boca Raton (2006)

    CrossRef  Google Scholar 

  3. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Applications. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4612-1478-6

    CrossRef  MATH  Google Scholar 

  4. Mariot, L., Leporati, A.: Heuristic search by particle swarm optimization of boolean functions for cryptographic applications. In: Genetic and Evolutionary Computation Conference, Companion Material Proceedings , GECCO 2015, Madrid, Spain, 11–15 July 2015, pp. 1425–1426 (2015)

    Google Scholar 

  5. Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary algorithms for the design of orthogonal latin squares based on cellular automata. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, Berlin, Germany, 15–19 July 2017, pp. 306–313 (2017)

    Google Scholar 

  6. Millan, W., Clark, A., Dawson, E.: Heuristic design of cryptographically strong balanced boolean functions. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 489–499. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054148

    CrossRef  Google Scholar 

  7. Picek, S., Jakobovic, D., Miller, J.F., Batina, L., Cupic, M.: Cryptographic boolean functions: one output, many design criteria. Appl. Soft Comput. 40, 635–653 (2016)

    CrossRef  Google Scholar 

  8. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming (2008). http://lulu.com and freely available at http://www.gp-field-guide.org.uk. (With contributions by J.R. Koza)

  9. Safadi, R., Wang, R.: The use of genetic algorithms in the construction of mixed multilevel orthogonal arrays. Technical report, Olin Corp Cheshire CT Olin Research Center (1992)

    Google Scholar 

  10. Sloane, N.J.: A library of orthogonal arrays. Fixed-level arrays with more than three levels: OA 16(4.2) (2007)

    Google Scholar 

  11. Stinson, D.R.: Combinatorial Designs: Constructions and Analysis. Springer, Heidelberg (2007). https://doi.org/10.1007/b97564

    CrossRef  MATH  Google Scholar 

  12. Wang, R., Safadi, R.: Generating mixed multilevel orthogonal arrays by simulated annealing. In: Page, C., LePage, R. (eds.) Computing Science and Statistics, pp. 557–560. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-2856-1_100

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by Croatian Science Foundation under the project IP-2014-09-4882.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mariot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Mariot, L., Picek, S., Jakobovic, D., Leporati, A. (2018). Evolutionary Search of Binary Orthogonal Arrays. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99253-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99252-5

  • Online ISBN: 978-3-319-99253-2

  • eBook Packages: Computer ScienceComputer Science (R0)