Skip to main content

Cancer and Infection

  • Chapter
  • First Online:
Cancer and AIDS

Abstract

Chronic infections (CI) contribute disproportionately to cancer causation in resource poor (RP) compared to resource rich (RR) parts of the world, with 26% of cancer cases in the former and 8% in the latter being infection-related. IARC declared only 11 of 3.7 × 1030 microbes on earth as well-established human carcinogens (WEHC), the contributions of which to cancer burden are designated by their “population attributable fractions (PAF).” They include viruses, including EBV, linked with Burkitt lymphoma in Africa, and nasopharyngeal carcinoma in South-East Asia (SEA), hepatitis B and C causing hepatocellular carcinoma, HPV linked to cervical cancer and penile cancer, KSHS linked to endemic and epidemic Kaposi’s sarcoma (KS), HTLV-1 linked to the adult T cell lymphoma/leukemia, and HIV, which promotes carcinogenesis through immune deficiency (ID). Others WEHCs are bacterial, including helicobacter pylori, linked to stomach cancer, and macroparasites including schistosoma hematobium, linked to bladder cancer in Africa, opistorchis viverrini and clonorchis sinensis, which cause biliary cancers in SEA. Helminthic infections, like hookworm, facilitate carcinogenesis through ID, e.g. KS. Several other microbes absent in the IARC list include the oncomicrobes, which induce micrometabolites, and are linked to carcinogenesis and cancer drug toxicity or activation. Other CIs transform benign disorders like obesity or genetic disorders like Crohn’s disease to multiple forms of cancers and colo-rectal cancer respectively. Human development and intergeneration associated variations in microbiomes probably contribute to aspects of the global cancer burden disparities, especially on childhood leukemia/lymphoma, resulting from maternal microbiome impact on pre- and postnatal immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Epstein M. Historical background; Burkitt’s lymphoma and Epstein-Barr virus. IARC Sci Publ. 1985;60:17.

    Google Scholar 

  2. Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet. 1964;283(7335):702–3.

    Article  Google Scholar 

  3. Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981;66(6):1192–308.

    Article  Google Scholar 

  4. IARC. Biological agents. Volume 100 B. A review of human carcinogens. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans IARC monographs on the evaluation of carcinogenic risks to humans/World Health Organization, International Agency for Research on Cancer. 2012;100(Pt B):1

    Google Scholar 

  5. Arrieta M-C, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152.

    Article  PubMed  Google Scholar 

  6. De Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13(6):607–15.

    Article  PubMed  Google Scholar 

  7. Franceschi S, Herrero R. Infections. In: Stewart BW, Wild CP, editors. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014. p. 105–14.

    Google Scholar 

  8. Raza S, Clifford G, Franceschi S. Worldwide variation in the relative importance of hepatitis B and hepatitis C viruses in hepatocellular carcinoma: a systematic review. Br J Cancer. 2007;96(7):1127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giordano TP, Henderson L, Landgren O, Chiao EY, Kramer JR, El-Serag H, et al. Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. JAMA. 2007;297(18):2010–7.

    Article  CAS  PubMed  Google Scholar 

  10. Mele A, Pulsoni A, Bianco E, Musto P, Szklo A, Sanpaolo MG, et al. Hepatitis C virus and B-cell non-Hodgkin lymphomas: an Italian multicenter case-control study. Blood. 2003;102(3):996–9.

    Article  CAS  PubMed  Google Scholar 

  11. De Sanjose S, Benavente Y, Vajdic CM, Engels EA, Morton LM, Bracci PM, et al. Hepatitis C and non-Hodgkin lymphoma among 4784 cases and 6269 controls from the International Lymphoma Epidemiology Consortium. Clin Gastroenterol Hepatol. 2008;6(4):451–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ferri C, Caracciolo F, Zignego AL, Civita LL, Monti M, Longombardo G, et al. Hepatitis C virus infection in patients with non-Hodgkin’s lymphoma. Br J Haematol. 1994;88(2):392–4.

    Article  CAS  PubMed  Google Scholar 

  13. Marcucci F, Mele A. Hepatitis viruses and non-Hodgkin lymphoma: epidemiology, mechanisms of tumorigenesis, and therapeutic opportunities. Blood. 2011;117(6):1792–8.

    Article  CAS  PubMed  Google Scholar 

  14. Clifford GM, Goncalves MAG, Franceschi S. HPV, group Hs. Human papillomavirus types among women infected with HIV: a meta-analysis. AIDS. 2006;20(18):2337–44.

    Article  PubMed  Google Scholar 

  15. De Vuyst H, Clifford GM, Nascimento MC, Madeleine MM, Franceschi S. Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: a meta-analysis. Int J Cancer. 2009;124(7):1626–36.

    Article  PubMed  Google Scholar 

  16. Herrero R, Castellsagué X, Pawlita M, Lissowska J, Kee F, Balaram P, et al. Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. J Natl Cancer Inst. 2003;95(23):1772–83.

    Article  PubMed  Google Scholar 

  17. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118(12):3030–44.

    Article  CAS  PubMed  Google Scholar 

  18. Ablashi D, Chatlynne L, Cooper H, Thomas D, Yadav M, Norhanom A, et al. Seroprevalence of human herpesvirus-8 (HHV-8) in countries of Southeast Asia compared to the USA, the Caribbean and Africa. Br J Cancer. 1999;81(5):893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schulz TF, Sheldon J, Greensill J. Kaposi’s sarcoma associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8). Virus Res. 2001;82(1):115–26.

    Article  Google Scholar 

  20. Boshoff C, Weiss RA. Epidemiology and pathogenesis of Kaposi’s sarcoma–associated herpesvirus. Philos Trans R Soc Lond B Biol Sci. 2001;356(1408):517–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, et al. A review of human carcinogens—Part B: biological agents. Lancet Oncol. 2009;10(4):321–2.

    Article  PubMed  Google Scholar 

  22. Wakeham K, Webb EL, Sebina I, Muhangi L, Miley W, Johnson WT, et al. Parasite infection is associated with Kaposi’s sarcoma associated herpesvirus (KSHV) in Ugandan women. Infect Agent Cancer. 2011;6(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Engels EA, Biggar RJ, Marshall VA, Walters MA, Gamache CJ, Whitby D, et al. Detection and quantification of Kaposi’s sarcoma-associated herpesvirus to predict AIDS-associated Kaposi's sarcoma. AIDS. 2003;17(12):1847–51.

    Article  PubMed  Google Scholar 

  24. Laney AS, Cannon MJ, Jaffe HW, Offermann MK, Ou C-Y, Radford KW, et al. Human herpesvirus 8 presence and viral load are associated with the progression of AIDS-associated Kaposi's sarcoma. AIDS. 2007;21(12):1541–5.

    Article  PubMed  Google Scholar 

  25. Ascoli V, Belli S, Benedetti M, Trinca S, Ricci P, Comba P. High incidence of classic Kaposi’s sarcoma in Mantua, Po Valley, Northern Italy (1989–1998). Br J Cancer. 2001;85(3):379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ascoli V, Facchinelli L, Valerio L, Zucchetto A, Dal Maso L, Coluzzi M. Distribution of mosquito species in areas with high and low incidence of classic Kaposi’s sarcoma and seroprevalence for HHV-8. Med Vet Entomol. 2006;20(2):198–208.

    Article  CAS  PubMed  Google Scholar 

  27. Zuckerman AJ. Virus-associated cancers in Africa. Br J Ind Med. 1986;43(1):71.

    PubMed Central  Google Scholar 

  28. Parsonnet J, Hansen S, Rodriguez L, Gelb AB, Warnke RA, Jellum E, et al. Helicobacter pylori infection and gastric lymphoma. N Engl J Med. 1994;330(18):1267–71.

    Article  CAS  PubMed  Google Scholar 

  29. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, et al. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med. 1991;325(16):1127–31.

    Article  CAS  PubMed  Google Scholar 

  30. Nomura A, Stemmermann GN, Chyou P-H, Kato I, Perez-Perez GI, Blaser MJ. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med. 1991;325(16):1132–6.

    Article  CAS  PubMed  Google Scholar 

  31. Cover TL, Tummuru M, Cao P, Thompson SA, Blaser MJ. Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J Biol Chem. 1994;269(14):10566–73.

    CAS  PubMed  Google Scholar 

  32. Takami S, Hayashi T, Tonokatsu Y, Shimoyama T, Tamura T. Chromosomal heterogeneity of Helicobacter pylori isolates by pulsed-field gel electrophoresis. Zentralbl Bakteriologie. 1993;280(1):120–7.

    CAS  Google Scholar 

  33. Desai M, Linton D, Owen R, Cameron H, Stanley J. Genetic diversity of Helicobacter pylori indexed with respect to clinical symptomatology, using a 16S rRNA and a species-specific DNA probe. J Appl Bacteriol. 1993;75(6):574–82.

    Article  CAS  PubMed  Google Scholar 

  34. Taylor DE, Eaton M, Chang N, Salama S. Construction of a Helicobacter pylori genome map and demonstration of diversity at the genome level. J Bacteriol. 1992;174(21):6800–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parsonnet J, Friedman G, Orentreich N, Vogelman H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut. 1997;40(3):297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maizels RM, Gause WC. How helminths go viral. Science. 2014;345(6196):517–8.

    Article  CAS  PubMed  Google Scholar 

  37. Salgame P, Yap GS, Gause WC. Effect of helminth-induced immunity on infections with microbial pathogens. Nat Immunol. 2013;14(11):1118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reese T, Wakeman B, Choi H, Hufford M, Huang S, Zhang X, et al. Helminth infection reactivates latent γ-herpesvirus via cytokine competition at a viral promoter. Science. 2014;345(6196):573–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Virgin HW. The virome in mammalian physiology and disease. Cell. 2014;157(1):142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Osborne LC, Monticelli LA, Nice TJ, Sutherland TE, Siracusa MC, Hepworth MR, et al. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science. 2014;345(6196):578–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garrett WS. Cancer and the microbiota. Science. 2015;348(6230):80–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci. 2012;109(40):16213–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15(3):317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13(11):800–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661–72.

    Article  CAS  PubMed  Google Scholar 

  46. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–71.

    Article  CAS  PubMed  Google Scholar 

  47. Irrazábal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell. 2014;54(2):309–20.

    Article  PubMed  Google Scholar 

  48. Abreu MT, Peek RM. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014;146(6):1534–46. e3.

    Article  CAS  PubMed  Google Scholar 

  49. Nougayrède J-P, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 2006;313(5788):848–51.

    Article  PubMed  Google Scholar 

  50. Putze J, Hennequin C, Nougayrède J-P, Zhang W, Homburg S, Karch H, et al. Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun. 2009;77(11):4696–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 2014:ciu787.

    Google Scholar 

  52. Sears CL, Islam S, Saha A, Arjumand M, Alam NH, Faruque A, et al. Association of enterotoxigenic Bacteroides fragilis infection with inflammatory diarrhea. Clin Infect Dis. 2008;47(6):797–803.

    Article  CAS  PubMed  Google Scholar 

  53. Wu S, Rhee K-J, Albesiano E, Rabizadeh S, Wu X, Yen H-R, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15(9):1016–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dejea CM, Wick EC, Hechenbleikner EM, White JR, Welch JLM, Rossetti BJ, et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci. 2014;111(51):18321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goodwin AC, Shields CED, Wu S, Huso DL, Wu X, Murray-Stewart TR, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci. 2011;108(37):15354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McCoy AN, Araujo-Perez F, Azcarate-Peril A, Yeh JJ, Sandler RS, Keku TO. Fusobacterium is associated with colorectal adenomas. PLoS One. 2013;8(1):e53653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sears CL. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev. 2009;22(2):349–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang G, Chen R, Rudney J. Streptococcus cristatus attenuates Fusobacterium nucleatum-induced interleukin-8 expression in oral epithelial cells. J Periodontal Res. 2008;43(4):408–16.

    Article  CAS  PubMed  Google Scholar 

  61. Milward M, Chapple I, Wright H, Millard J, Matthews J, Cooper P. Differential activation of NF-κB and gene expression in oral epithelial cells by periodontal pathogens. Clin Exp Immunol. 2007;148(2):307–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Allen-Vercoe E, Strauss J, Chadee K. Fusobacterium nucleatum: an emerging gut pathogen? Gut Microbes. 2011;2(5):294–8.

    Article  PubMed  Google Scholar 

  63. Park S-R, Kim D-J, Han S-H, Kang M-J, Lee J-Y, Jeong Y-J, et al. Diverse Toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages. Infect Immun. 2014;82(5):1914–20.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu R, Wu S, Zhang Y, Xia Y, Liu X, Zheng Y, et al. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogene. 2014;3(6):e105.

    Article  CAS  Google Scholar 

  66. Lu R, Liu X, Wu S, Xia Y, Zhang Y-g, Petrof EO, et al. Consistent activation of the β-catenin pathway by Salmonella type-three secretion effector protein AvrA in chronically infected intestine. Am J Physiol-Gastrointest Liver Physiol. 2012;303(10):G1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dutta U, Garg PK, Kumar R, Tandon RK. Typhoid carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. Am J Gastroenterol. 2000;95(3):784–7.

    Article  CAS  PubMed  Google Scholar 

  68. Lazcano-Ponce EC, Miquel J, Muñoz N, Herrero R, Ferrecio C, Wistuba II, et al. Epidemiology and molecular pathology of gallbladder cancer. CA Cancer J Clin. 2001;51(6):349–64.

    Article  CAS  PubMed  Google Scholar 

  69. Wistuba II, Gazdar AF. Gallbladder cancer: lessons from a rare tumour. Nat Rev Cancer. 2004;4(9):695–706.

    Article  CAS  PubMed  Google Scholar 

  70. Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, et al. Landscape of genomic alterations in cervical carcinomas. Nature. 2014;506(7488):371–5.

    Article  CAS  PubMed  Google Scholar 

  71. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.

    Article  CAS  PubMed  Google Scholar 

  73. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, Liu H, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.

    Article  CAS  PubMed  Google Scholar 

  75. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.

    Article  CAS  PubMed  Google Scholar 

  76. O’Rourke RW. Obesity and cancer: at the crossroads of cellular metabolism and proliferation. Surg Obes Relat Dis. 2014;10(6):1208–19.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer [mdash] mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol. 2014;10(8):455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Berger NA. Obesity and cancer pathogenesis. Ann N Y Acad Sci. 2014;1311(1):57–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ungefroren H, Gieseler F, Fliedner S, Lehnert H. Obesity and cancer. Horm Mol Biol Clin Invest. 2015;21(1):5–15.

    CAS  Google Scholar 

  80. Patterson AD, Turnbaugh PJ. Microbial determinants of biochemical individuality and their impact on toxicology and pharmacology. Cell Metab. 2014;20(5):761–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Perwez Hussain S, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007;121(11):2373–80.

    Article  PubMed  Google Scholar 

  82. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  83. Chaturvedi AK, Moore SC, Hildesheim A. Invited commentary: circulating inflammation markers and cancer risk – implications for epidemiologic studies. Am J Epidemiol. 2013;177(1):14–9.

    Article  PubMed  Google Scholar 

  84. Nishimoto S, Fukuda D, Higashikuni Y, Tanaka K, Hirata Y, Murata C, et al. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Sci Adv. 2016;2(3):e1501332.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yeagle P. Cell-free DNA and adipose tissue inflammation. Science. 2016;352(6281):48.

    Article  Google Scholar 

  86. Zimmerman DR. Role of subtherapeutic levels of antimicrobials in pig production. J Anim Sci. 1986;62(Suppl 3):6–17.

    Google Scholar 

  87. Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science. 2016;352(6285):544–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Azad M, Bridgman S, Becker A, Kozyrskyj A. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes. 2014;38(10):1290–8.

    Article  CAS  Google Scholar 

  89. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158(4):705–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol. 2009;7(12):887–94.

    Article  CAS  PubMed  Google Scholar 

  92. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529(7585):212–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Williams CKO. Epidemiology of childhood leukemia/lymphoma in resource-poor countries: Nature's manifestation of Ludwig Gross’s experiments on environmental influence on animal leukemogenesis?. 104th Annual Meeting of the American Association for Cancer Research April 2013.

    Google Scholar 

  94. Williams CK, Foroni L, Luzzatto L, Saliu I, Levine A, Greaves MF. Childhood leukaemia and lymphoma: African experience supports a role for environmental factors in leukaemogenesis. E Cancer Med Sci. 2014;8:478.

    Google Scholar 

  95. Istre GR, Conner JS, Broome CV, Hightower A, Hopkins RS. Risk factors for primary invasive Haemophilus influenzae disease: increased risk from day care attendance and school-aged household members. J Pediatr. 1985;106(2):190–5.

    Article  CAS  PubMed  Google Scholar 

  96. Ferson MJ. Infections in day care. Curr Opin Pediatr. 1993;5(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  97. Nystad W, Skrondal A, Magnus P. Day care attendance, recurrent respiratory tract infections and asthma. Int J Epidemiol. 1999;28(5):882–7.

    Article  CAS  PubMed  Google Scholar 

  98. Cornwall W. Study may explain mysterious cancer–day care connection. 2015. Available from: www.sciencemag.org/news/2015/05/taxonomy/term/351

  99. de Agüero MG, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351(6279):1296–302.

    Article  Google Scholar 

  100. Wiemels J, Cazzaniga G, Daniotti M, Eden O, Addison G, Masera G, et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet. 1999;354(9189):1499–503.

    Article  CAS  PubMed  Google Scholar 

  101. Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer. 2003;3(9):639–49.

    Article  CAS  PubMed  Google Scholar 

  102. Swaminathan S, Klemm L, Park E, Papaemmanuil E, Ford A, Kweon S-M, et al. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat Immunol. 2015;16(7):766–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, C.K.O. (2019). Cancer and Infection. In: Cancer and AIDS . Springer, Cham. https://doi.org/10.1007/978-3-319-99235-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99235-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99234-1

  • Online ISBN: 978-3-319-99235-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics