Skip to main content

Comparing Risk Identification in Hazard Analysis and Threat Analysis

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11094))

Included in the following conference series:

  • 3924 Accesses

Abstract

In the context of cyber-physical systems, safety and security have been discussed and dealt with separately in the past, since security was not a critical issue of safety and vice versa. They are similar in some points, and it is natural to try dealing with them in parallel or in a unified manner. This paper considers symmetrical treatment of safety and security, especially in identifying possible harms. We compare the result of hazard analysis and threat analysis for a single model of a small IoT system. It shows that identified harms have much overlaps, which indicates the two analyses can be unified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mapping or embedding concepts in security to safety are proposed in [6, 20].

  2. 2.

    Now indirect or secondary damage, like financial costs to recover, are ignored.

  3. 3.

    In the table, definitions are modified slightly to save spaces.

  4. 4.

    Of course the target system must be described with its components and functions before analysis.

  5. 5.

    ‘F’ and ‘E/L’ mean ‘fail to operate’ and ‘operate early/late‘ respectively.

  6. 6.

    In the upper table, ‘when’ factor is omitted as the lifecycle phase of SoI is fixed in this case study.

References

  1. Scharl, A., Stottlar, K., Kady, R.: Functional Hazard Analysis(FHA) Methodology Tutorial. Technical report NSWCDD-MP-14-00380 (2014)

    Google Scholar 

  2. Derock, A., Hebrard, P., Vallee, F.: Convergence of the latest standards addressing safety and security for information technology. In: Embedded Real Time Software and Systems (ERTSS) (2010)

    Google Scholar 

  3. Chen, B., et al.: Security analysis of urban railway systems: the need for a cyber-physical perspective. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 277–290. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24249-1_24

    Chapter  Google Scholar 

  4. Raspotnig, C., Opdahl, A.: Comparing risk identification techniques for safety and security requirements. J. Syst. Softw. 86(4), 1124–1151 (2013)

    Article  Google Scholar 

  5. Raspotnig, C., Karpati, P., Katta, V.: A combined process for elicitation and analysis of safety and security requirements. In: Bider, I., et al. (eds.) BPMDS/EMMSAD -2012. LNBIP, vol. 113, pp. 347–361. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31072-0_24

    Chapter  Google Scholar 

  6. Schmittner, C., Gruber, T., Puschner, P., Schoitsch, E.: Security application of failure mode and effect analysis (FMEA). In: Bondavalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 310–325. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2_21

    Chapter  Google Scholar 

  7. Ericson II., C.A.: Hazard Analysis Techniques for System Safety, 2nd edn. Wiley, Hoboken (2016)

    Google Scholar 

  8. Macher, G., Höller, A., Sporer, H., Armengaud, E., Kreiner, C.: A combined safety-hazards and security-threat analysis method for automotive systems. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 237–250. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24249-1_21

    Chapter  Google Scholar 

  9. ISO 31000. Risk management - Principles and guidelines (2009)

    Google Scholar 

  10. ISO/IEC 15408. Common Criteria for Information Technology Security Evaluation (2017)

    Google Scholar 

  11. ISO/IEC Guide 51. Safety aspects - Guidelines for their inclusion in standards (2014)

    Google Scholar 

  12. JASO TP15002. Guideline for Automotive Information Security Analysis (2015)

    Google Scholar 

  13. Taguchi, K., Souma, D., Nishihara, H.: Safe & sec case pattrens. In: SAFECOMP 2015 Workshops, pp. 27–37 (2015)

    Google Scholar 

  14. Piètre-Cambacédès, L., Chaudet, C.: The SEMA referential framework: avoiding ambiguities in the terms “security” and “safety”. Int. J. Crit. Infrastruct. Prot. 3(2), 55–66 (2010)

    Article  Google Scholar 

  15. Piètre-Cambacédès, L., Bouissou, M.: Cross-fertilization between safety and security engineering. Reliab. Eng. Syst. Saf. 110, 110–126 (2013)

    Article  Google Scholar 

  16. Bieber, P., Blanquart, J.-P., Descargues, G., Dulucq, M., Fourastier, Y., Hazane, E., Julien, M., Léonardon, L., Saroulille, G.: Security and safety assurance for aerospace embedded systems. In: Embedded Real-Time Software and Systems (ERTSS) (2012)

    Google Scholar 

  17. RTCA DO-326A. Airworthiness Security Process Specification (2014)

    Google Scholar 

  18. Plósz, S., Schmittner, C., Varga, P.: Combining safety and security analysis for industrial collaborative automation systems. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10489, pp. 187–198. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66284-8_16

    Chapter  Google Scholar 

  19. Shostack, A.: Threat Modeling: Designing for Security. Wiley, Hoboken (2014)

    Google Scholar 

  20. Stoneburner, G.: Toward a unified security-safety model. Computer 39(8), 96–97 (2006)

    Article  Google Scholar 

  21. Kawanishi, Y., Nishihara, H., Souma, D., Yoshida, H.: Detailed analysis of security evaluation of automotive systems based on JASO TP15002. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10489, pp. 211–224. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66284-8_18

    Chapter  Google Scholar 

  22. Guo, Z., Zeckzer, D., Liggesmeyer, P., Maeckel, O.: Identification of security-safety requirements for the outdoor robot RAVON using safety analysis techniques. In: ICSEA (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Nishihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nishihara, H., Taguchi, K. (2018). Comparing Risk Identification in Hazard Analysis and Threat Analysis. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2018. Lecture Notes in Computer Science(), vol 11094. Springer, Cham. https://doi.org/10.1007/978-3-319-99229-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99229-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99228-0

  • Online ISBN: 978-3-319-99229-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics