Skip to main content

The InGaN Material System and Blue/Green Emitters

  • Chapter
  • 2213 Accesses

Part of the Solid State Lighting Technology and Application Series book series (SSLTA,volume 4)

Abstract

Due to the advantage of low-power consumption, long lifetime, and high efficiency, nitride-based light-emitting diodes (LEDs) have long been considered to be a promising technology for next-generation illumination. The efforts on this topic could be tracked back to the 1950s. The possibility of a new lighting technology using GaN was considered by Philips Research Laboratories in the 1950s, and the photoluminescence of GaN power was obtained by H.G. Grimmeiss and H. Koelmans. The first single-crystal film of GaN was prepared by Maruska and Tietjenusing, the HVPE technique in 1969. At the end of the 1980s, the breakthrough of Amano, Akasaki, and Nakamura on p doping opened the way to p-n junctions in GaN. Another crucial step in developing efficient blue LEDs was the growth of alloys (AlGaN, InGaN), which are necessary to produce heterojunctions. In 1994, Nakamura and co-workers achieved a quantum efficiency of 2.7% using a double heterojunction InGaN/AlGaN. It was the first step toward the commercial development of efficient nitride LEDs, and their tremendous application was open. Today’s efficient of LEDs is the result of a long series of breakthroughs in fundamental materials physics and high-quality crystal growth, in device physics with advanced heterostructure design, and in optical physics for light extraction. And the application will continue to expand to many novel fields. At the same time, the efficiency, which relates to fundamental physics, growth, and fabrication, still needs to be further improved. In this chapter, some pioneering and significant experiment results.

In this work, we will focus on two important wavelength range of nitride LEDs, namely, blue and green one. We describe a number of factors that affect the efficiency of LEDs and analyze the effects of polarization, carrier transport, carrier localization, current expansion, epitaxial structure design, Auger recombination, and light extraction. Some pioneering and significant experiment results will be presented. We hope it can provide some meaningful information for the development of high-efficiency GaN-based blue and green LEDs.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-99211-2_6
  • Chapter length: 41 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-99211-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9
Fig. 6.10
Fig. 6.11
Fig. 6.12
Fig. 6.13
Fig. 6.14
Fig. 6.15
Fig. 6.16
Fig. 6.17
Fig. 6.18
Fig. 6.19
Fig. 6.20
Fig. 6.21
Fig. 6.22
Fig. 6.23
Fig. 6.24
Fig. 6.25

References

  1. H.P. Maruskas, J.J. Tietjen, The preparation and properties of vapor-deposited single-crystal-line GaN. Appl. Phys. Lett. 15(10), 327 (1969)

    Google Scholar 

  2. A.G. Bhuiyan, A. Hashimoto, A. Yamamoto, Indium nitride (Inn): a review on growth, characterization, and properties. J. Appl. Phys. 94(5), 2779–2808 (2003)

    Google Scholar 

  3. H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an Aln buffer layer. Appl. Phys. Lett. 48(5), 353–355 (1986)

    Google Scholar 

  4. S. Yoshida, S. Misawa, S. Gonda, Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using Aln-coated sapphire substrates. Appl. Phys. Lett. 42(5), 427–429 (1983)

    Google Scholar 

  5. D.K. Wickenden, T.J. Kistenmacher, W.A. Bryden, J.S. Morgan, A.E. Wickenden, The effect of self nucleation layers on the MOCVD growth of gallium nitride on sapphire. Mater. Res. Soc. 221, 167–172 (1991)

    Google Scholar 

  6. S. Nakamura, GaN growth using GaN buffer layer. Jpn. J. Appl. Phys. 30(4A), L1705–L1707 (1991)

    Google Scholar 

  7. S. Nakamura, The roles of structural imperfections in Ingan-based blue light-emitting diodes and laser diodes. Science 281(5379), 956–961 (1998)

    Google Scholar 

  8. S. Tomoya, S. Hisao, H. Maosheng, N. Yoshiki, K. Satoshi, T. Satoru, Y. Kenji, N. Katsushi, T.R. Linda, S. Shiro, Direct evidence that dislocations are non-radiative recombination centers in GaN. Jpn. J. Appl. Phys. 37(4A), L398–L400 (1998)

    Google Scholar 

  9. K. Forghani, M. Klein, F. Lipski, S. Schwaiger, J. Hertkorn, R.A.R. Leute, F. Scholz, M. Feneberg, B. Neuschl, K. Thonke, O. Klein, U. Kaiser, R. Gutt, T. Passow, High quality AlGaN epilayers grown on sapphire using SiNx interlayers. J. Cryst. Growth 315(1), 216–219 (2011)

    Google Scholar 

  10. H.-Y. Shin, S.K. Kwon, Y.I. Chang, M.J. Cho, K.H. Park, Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate. J. Cryst. Growth 311(17), 4167–4170 (2009)

    Google Scholar 

  11. C.I.H. Ashby, C.C. Mitchell, J. Han, N.A. Missert, P.P. Provencio, D.M. Follstaedt, G.M. Peake, L. Griego, Low-dislocation-density GaN from a single growth on a textured substrate. Appl. Phys. Lett. 77(20), 3233–3235 (2000)

    Google Scholar 

  12. L. Meng, W. Guohong, L. Hongjian, L. Zhicong, Y. Ran, L. Panpan, L. Jing, Y. Xiaoyan, W. Junx, L. Jinmin, Low threading dislocation density in GaN films grown on patterned sapphire substrates. J. Semicond. 33, 113002 (2012)

    Google Scholar 

  13. H.K.N. Kazumasa, O. Masaru, M. Hiromitsu, N. Mitsuhisa, M. Atsushi, M. Hideto, I. Yasushi, M. Takayoshi, Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (facelo). J. Cryst. Growth 221(1-4), 316–326 (2000)

    Google Scholar 

  14. K. Iida, T. Kawashima, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, A. Bandoh, Epitaxial lateral overgrowth of Alxga1−Xn (X>0.2) on sapphire and its application to Uv-B-light-emitting devices. J. Cryst. Growth 298, 265–267 (2007)

    Google Scholar 

  15. R. Matsuoka, T. Okimoto, K. Nishino, Y. Naoi, S. Sakai, Algan epitaxial lateral overgrowth on Ti-evaporated GaN/sapphire substrate. J. Cryst. Growth 311(10), 2847–2849 (2009)

    Google Scholar 

  16. T. Satoru, T. Misaichi, A. Yoshinobu, Anti-surfactant in Iii-nitride epitaxy quantum dot formation and dislocation termination. Jpn. J. Appl. Phys. 39(8B), L831–L834 (2000)

    Google Scholar 

  17. K. Engl, M. Beer, N. Gmeinwieser, U.T. Schwarz, J. Zweck, W. Wegscheider, S. Miller, A. Miler, H.J. Lugauer, G. Brüderl, A. Lell, V. Härle, Influence of an in situ-deposited intermediate layer inside GaN and AlGaN layers on SiC substrates. J. Cryst. Growth 289(1), 6–13 (2006)

    Google Scholar 

  18. K. Yoshiki, K. Shota, H. Kazumasa, S. Nobuhiko, Selective growth of wurtzite GaN and AlGaN on GaN/sapphire substrates by metalorganic vapor phase epitaxy. J. Cryst. Growth 144(3–4), 133–140 (1994)

    Google Scholar 

  19. O. Klein, J. Biskupek, U. Kaiser, K. Forghani, S.B. Thapa, F. Scholz, Simulation supported analysis of the effect of sinxinterlayers in AlGaN on the dislocation density reduction. J. Phys. Conf. Ser. 209(1), 012018 (2010)

    Google Scholar 

  20. S. Haffouz, H. Lahrèche, P. Vennéguès, P. de Mierry, B. Beaumont, F. Omnès, P. Gibart, The effect of the Si/N treatment of a nitridated sapphire surface on the growth mode of GaN in low-pressure metalorganic vapor phase epitaxy. Appl. Phys. Lett. 73(9), 1278–1280 (1998)

    Google Scholar 

  21. V. Srikant, J.S. Speck, D.R. Clarke, Mosaic structure in epitaxial thin films having large lattice mismatch. J. Appl. Phys. 82(9), 4286–4295 (1997)

    Google Scholar 

  22. K.K. Ansah Antwi, C.B. Soh, Q. Wee, R.J.N. Tan, P. Yang, H.R. Tan, L.F. Sun, Z.X. Shen, S.J. Chua, Crystallographically tilted and partially strain relaxed GaN grown on inclined {111} facets etched on Si(100) substrate. J. Appl. Phys. 114(24), 243512 (2013)

    Google Scholar 

  23. L. Liu, J.H. Edgar, Substrates for gallium nitride epitaxy. Mater. Sci. Eng. 37(3), 61–127 (2002)

    Google Scholar 

  24. Z.Y. Xie, C.H. Wei, S.F. Chen, S.Y. Jiang, J.H. Edgar, Surface etching of 6h-Sic (0001) and surface morphology of the subsequently grown GaN via MOCVD. J. Electron. Mater. 29(4), 411 (2000)

    Google Scholar 

  25. M.I. Utama, Q. Zhang, J. Zhang, Y. Yuan, F.J. Belarre, J. Arbiol, Q. Xiong, Recent developments and future directions in the growth of nanostructures by Van Der Waals epitaxy. Nanoscale 5(9), 3570–3588 (2013)

    Google Scholar 

  26. K. Chung, C.H. Lee, G.C. Yi, Transferable GaN layers grown on ZNO-coated graphene layers for optoelectronic devices. Science 330(6004), 655–657 (2010)

    Google Scholar 

  27. K. Chung, S. In Park, H. Baek, J.-S. Chung, G.-C. Yi, High-quality GaN films grown on chemical vapor-deposited graphene films. NPG Asia Mater. 4(9), e24 (2012)

    Google Scholar 

  28. Z.Y. Al Balushi, T. Miyagi, Y.-C. Lin, K. Wang, L. Calderin, G. Bhimanapati, J.M. Redwing, J.A. Robinson, The impact of graphene properties on GaN and Aln nucleation. Surf. Sci. 634, 81–88 (2015)

    Google Scholar 

  29. J. Kim, C. Bayram, H. Park, C.W. Cheng, C. Dimitrakopoulos, J.A. Ott, K.B. Reuter, S.W. Bedell, D.K. Sadana, Principle of direct Van Der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 5, 4836 (2014)

    Google Scholar 

  30. S.J. Chae, Y.H. Kim, T.H. Seo, D.L. Duong, S.M. Lee, M.H. Park, E.K. Suh, Direct growth of etch pit-free GaN crystals on few-layer graphene. RSC Adv. 5(2), 1343–1349 (2012)

    Google Scholar 

  31. J.W. Shon, J. Ohta, K. Ueno, A. Kobayashi, H. Fujioka, Fabrication of full-color InGaN-based light-emitting diodes on amorphous substrates by pulsed sputtering. Sci. Rep. 4, 5325 (2014)

    Google Scholar 

  32. L. Qi, Y. Xu, Z. Li, E. Zhao, S. Yang, B. Cao, J. Zhang, J. Wang, K. Xu, Stress analysis of transferable crack-free gallium nitride microrods grown on graphene/Sic substrate. Mater. Lett. 185, 315–318 (2016)

    Google Scholar 

  33. N. Han, T.V. Cuong, M. Han, B.D. Ryu, S. Chandramohan, J.B. Park, J.H. Kang, Y.J. Park, K.B. Ko, H.Y. Kim, H.K. Kim, J.H. Ryu, Y.S. Katharria, C.J. Choi, C.H. Hong, Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat. Commun. 4, 1452 (2013)

    Google Scholar 

  34. M. Han, N. Han, E. Jung, B.D. Ryu, K.B. Ko, T.v. Cuong, H. Kim, J.K. Kim, C.-H. Hong, Effect of curved graphene oxide in a GaN light-emitting-diode for improving heat dissipation with a patterned sapphire substrate. Semicond. Sci. Technol. 31(8), 085010 (2016)

    Google Scholar 

  35. J.W. Chung, F.S. Ohuchi, Deposition of AlN on WS2 (0001) substrate by atomic layer growth process. MRS Online Proc. Library Arch. 449, 379–384 (1996)

    Google Scholar 

  36. A. Yamada, K.P. Ho, T. Maruyama, K. Akimoto, Molecular beam epitaxy of GaN on a substrate of Mos2 layered compound. Appl. Phys. A 69(1), 89–92 (1999)

    Google Scholar 

  37. P. Gupta, A.A. Rahman, S. Subramanian, S. Gupta, A. Thamizhavel, T. Orlova, S. Rouvimov, S. Vishwanath, V. Protasenko, M.R. Laskar, H.G. Xing, D. Jena, A. Bhattacharya, Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth. Sci. Rep. 6, 23708 (2016)

    Google Scholar 

  38. M. Tangi, P. Mishra, C.C. Tseng, T.K. Ng, M.N. Hedhili, D.H. Anjum, M.S. Alias, N. Wei, L.J. Li, B.S. Ooi, Band alignment at GaN/single-layer WSe2 interface. ACS Appl. Mater. Interfaces 9(10), 9110–9117 (2017)

    Google Scholar 

  39. M. Tangi, P. Mishra, T.K. Ng, M.N. Hedhili, B. Janjua, M.S. Alias, D.H. Anjum, C.-C. Tseng, Y. Shi, H.J. Joyce, L.-J. Li, B.S. Ooi, Determination of band offsets at GaN/single-layer MoS2 heterojunction. Appl. Phys. Lett. 109(3), 032104 (2016)

    Google Scholar 

  40. S. Hwang, W. Jin Ha, J. Kyu Kim, J. Xu, J. Cho, E. Fred Schubert, Promotion of hole injection enabled by Gainn/GaN light-emitting triodes and its effect on the efficiency droop. Appl. Phys. Lett. 99(18), 181115 (2011)

    Google Scholar 

  41. J. Kang, H. Li, Z. Li, Z. Liu, P. Ma, X. Yi, G. Wang, Enhancing the performance of green GaN-based light-emitting diodes with graded superlattice AlGaN/GaN inserting layer. Appl. Phys. Lett. 103(10), 102104 (2013)

    Google Scholar 

  42. Y. Zhao, S. Tanaka, C.-C. Pan, K. Fujito, D. Feezell, J.S. Speck, S.P. DenBaars, S. Nakamura, High-power blue-violet semipolar ($20\bar{2}\bar{1}$) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm$^{2}$. Appl. Phys. Express 4(8), 082104 (2011)

    Google Scholar 

  43. H.J. Chung, R.J. Choi, M.H. Kim, J.W. Han, Y.M. Park, Y.S. Kim, H.S. Paek, C.S. Sone, Y.J. Park, J.K. Kim, E.F. Schubert, Improved performance of GaN-based blue light emitting diodes with InGaN/GaN multilayer barriers. Appl. Phys. Lett. 95(24), 241109 (2009)

    Google Scholar 

  44. H.P. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G.A. Botton, Z. Mi, Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes. Nano Lett. 12(3), 1317–1323 (2012)

    Google Scholar 

  45. X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, Ü. Özgür, H. Morkoç, A. Matulionis, T. Paskova, G. Mulholland, K.R. Evans, InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes. Appl. Phys. Lett. 97(3), 031110 (2010)

    Google Scholar 

  46. C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, J.S. Speck, The efficiency challenge of nitride light-emitting diodes for lighting. Phys. Status Solidi A 212(5), 899–913 (2015)

    Google Scholar 

  47. T. Bret, V. Wagner, D. Martin, P. Hoffmann, M. Ilegems, A mechanistic study of GaN laser lift-off. Phys. Stat. Sol. A 194(2), 559–562 (2002)

    Google Scholar 

  48. J.S. Ha, S.W. Lee, H.J. Lee, H.J. Lee, S.H. Lee, H. Goto, T. Kato, K. Fujii, M.W. Cho, T. Yao, The fabrication of vertical light-emitting diodes using chemical lift-off process. IEEE Photon. Technol. Lett. 20(1-4), 175–177 (2008)

    Google Scholar 

  49. Y.H. Zhou, Y.W. Tang, J.P. Rao, F. Jiang, Improvement for extraction efficiency of vertical GaN-based LED on si substrate by photo-enhanced wet etching. Acta Opt. Sin. 29(1), 252–255 (2009)

    Google Scholar 

  50. M. Tchernycheva, P. Lavenus, H. Zhang, A.V. Babichev, G. Jacopin, M. Shahmohammadi, F.H. Julien, R. Ciechonski, G. Vescovi, O. Kryliouk, InGaN/GaN core-shell single nanowire light emitting diodes with graphene-based p-contact. Nano Lett. 14(5), 2456–2465 (2014)

    Google Scholar 

  51. J.R. Riley, S. Padalkar, Q. Li, P. Lu, D.D. Koleske, J.J. Wierer, G.T. Wang, L.J. Lauhon, Three-dimensional mapping of quantum wells in a GaN/InGaN core-shell nanowire light-emitting diode array. Nano Lett. 13(9), 4317–4325 (2013)

    Google Scholar 

  52. H.P. Nguyen, S. Zhang, A.T. Connie, M.G. Kibria, Q. Wang, I. Shih, Z. Mi, Breaking the carrier injection bottleneck of phosphor-free nanowire white light-emitting diodes. Nano Lett. 13(11), 5437–5442 (2013)

    Google Scholar 

  53. R. Koester, J.S. Hwang, D. Salomon, X. Chen, C. Bougerol, J.P. Barnes, S. Dang Dle, L. Rigutti, A. de Luna Bugallo, G. Jacopin, M. Tchernycheva, C. Durand, J. Eymery, M-plane core-shell InGaN/GaN multiple-quantum-wells on GaN wires for electroluminescent devices. Nano Lett. 11(11), 4839–4845 (2011)

    Google Scholar 

  54. F. Qian, S. Gradečak, Y. Li, C. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5(11), 2287–2291 (2005)

    Google Scholar 

  55. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Ramsteiner, M. Reiche, K.H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406(24), 865–868 (2000)

    Google Scholar 

  56. S.P. Chang, Y.C. Chen, J.K. Huang, Y.J. Cheng, J.R. Chang, K.P. Sou, Y.T. Kang, H.C. Yang, T.C. Hsu, H.C. Kuo, C.Y. Chang, Electrically driven nanopyramid green light emitting diode. Appl. Phys. Lett. 100(6), 061106 (2012)

    Google Scholar 

  57. S. Li, A. Waag, GaN based nanorods for solid state lighting. J. Appl. Phys. 111(7), 071101 (2012)

    Google Scholar 

  58. W. Guo, M. Zhang, A. Banerjee, P. Bhattacharya, Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Lett. 10(9), 3355–3359 (2010)

    Google Scholar 

  59. R. Armitage, K. Tsubaki, Multicolour luminescence from InGaN quantum wells grown over GaN nanowire arrays by molecular-beam epitaxy. Nanotechnology 21(19), 195202 (2010)

    Google Scholar 

  60. J. Ma, L. Wang, Z. Liu, G. Yuan, X. Ji, P. Ma, J. Wang, X. Yi, G. Wang, J. Li, Nitride-based micron-scale hexagonal pyramids array vertical light emitting diodes by N-polar wet etching. Opt. Express 21(3), 3547–3556 (2013)

    Google Scholar 

  61. L. Wang, J. Ma, Z. Liu, X. Yi, G. Yuan, G. Wang, N-polar GaN etching and approaches to quasi-perfect micro-scale pyramid vertical light-emitting diodes array. J. Appl. Phys. 114(13), 133101 (2013)

    Google Scholar 

  62. J. Kang, Z. Li, Z. Liu, H. Li, Y. Zhao, Y. Tian, P. Ma, X. Yi, G. Wang, Investigation of the wet-etching mechanism of Ga-polar AlGaN/GaN micro-pillars. J. Cryst. Growth 386, 175–178 (2014)

    Google Scholar 

  63. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)

    Google Scholar 

  64. T. Kuykendall, P.J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, P. Yang, Crystallographic alignment of high-density gallium nitride nanowire arrays. Nat. Mater. 3(8), 524–528 (2004)

    Google Scholar 

  65. S. Wu, L. Wang, X. Yi, Z. Liu, T. Wei, G. Yuan, J. Wang, J. Li, Influence of lateral growth on the optical properties of GaN nanowires grown by hydride vapor phase epitaxy. J. Appl. Phys. 122(20), 205302 (2017)

    Google Scholar 

  66. S. Wu, L. Wang, X. Yi, Z. Liu, J. Yan, G. Yuan, T. Wei, J. Wang, J. Li, Crystallographic orientation control and optical properties of GaN nanowires. RSC Adv. 8(4), 2181–2187 (2018)

    Google Scholar 

  67. S. Wu, L. Wang, Z. Liu, X. Yi, Y. Huang, C. Yang, T. Wei, J. Yan, G. Yuan, J. Wang, J. Li, Ultrafast growth of horizontal GaN nanowires by HVPE through flipping the substrate. Nanoscale 10(13), 5888–5896 (2018)

    Google Scholar 

  68. D. Stephen, X.S. Hersee, X. Wang, The controlled growth of GaN nanowires. Nano Lett. 6(8), 1808–1811 (2006)

    Google Scholar 

  69. P. Ren, G. Han, B.-L. Fu, B. Xue, N. Zhang, Z. Liu, L.-X. Zhao, J.-X. Wang, J.-M. Li, Selective area growth and characterization of GaN nanorods fabricated by adjusting the hydrogen flow rate and growth temperature with metal organic chemical vapor deposition. Chin. Phys. Lett. 33(6), 068101 (2016)

    Google Scholar 

  70. K. Wu, T. Wei, D. Lan, X. Wei, H. Zheng, Y. Chen, H. Lu, K. Huang, J. Wang, Y. Luo, J. Li, Phosphor-free nanopyramid white light-emitting diodes grown on {101¯1} planes using nanospherical-lens photolithography. Appl. Phys. Lett. 103(24), 241107 (2013)

    Google Scholar 

  71. H. Sekiguchi, K. Kishino, A. Kikuchi, Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett. 96(23), 231104 (2010)

    Google Scholar 

  72. H. Lin, Y. Lu, H. Chen, H. Lee, S. Gwo, InGaN/GaN nanorod array white light-emitting diode. Appl. Phys. Lett. 97(7), 073101 (2010)

    Google Scholar 

  73. Y.H. Ra, R. Navamathavan, J.H. Park, C.R. Lee, Coaxial In(x)Ga(1-x)N/GaN multiple quantum well nanowire arrays on Si(111) substrate for high-performance light-emitting diodes. Nano Lett. 13(8), 3506–3516 (2013)

    Google Scholar 

  74. Y.J. Hong, C.H. Lee, A. Yoon, M. Kim, H.K. Seong, H.J. Chung, C. Sone, Y.J. Park, G.C. Yi, Visible-color-tunable light-emitting diodes. Adv. Mater. 23(29), 3284–3288 (2011)

    Google Scholar 

  75. V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, P. Lugli, Effects of macroscopic polarization in III-V nitride multiple quantum wells. Phys. Rev. B 60(12), 8849 (1999)

    Google Scholar 

  76. F. Bernardini, V. Fiorentini, in Spontaneous vs. piezoelectric polarization in III-V nitrides: conceptual aspects and practical consequences. arXiv preprint cond-mat/9908087, 1999

    Google Scholar 

  77. D. Doppalapudi, S. Basu, K. Ludwig Jr., T. Moustakas, Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy. J. Appl. Phys. 84(3), 1389–1395 (1998)

    Google Scholar 

  78. F. Bernardini, V. Fiorentini, D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56(16), R10024 (1997)

    Google Scholar 

  79. S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, H. Kudo, Internal quantum efficiency of highly-efficient In x Ga 1− x N-based near-ultraviolet light-emitting diodes. Appl. Phys. Lett. 83(24), 4906–4908 (2003)

    Google Scholar 

  80. A. Hangleiter, F. Hitzel, S. Lahmann, U. Rossow, Composition dependence of polarization fields in GaInN/GaN quantum wells. Appl. Phys. Lett. 83(6), 1169–1171 (2003)

    Google Scholar 

  81. J. Xu, M.F. Schubert, A.N. Noemaun, D. Zhu, J.K. Kim, E.F. Schubert, M.H. Kim, H.J. Chung, S. Yoon, C. Sone, Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes. Appl. Phys. Lett. 94(1), 011113 (2009)

    Google Scholar 

  82. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki, Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. 36(4A), L382 (1997)

    Google Scholar 

  83. C.-F. Huang, T.-C. Liu, Y.-C. Lu, W.-Y. Shiao, Y.-S. Chen, J.-K. Wang, C.-F. Lu, C. Yang, Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth. J. Appl. Phys. 104(12), 123106 (2008)

    Google Scholar 

  84. J.Y. Park, J.H. Lee, S. Jung, T. Ji, InGaN/GaN-based green-light-emitting diodes with an inserted InGaN/GaN-graded superlattice layer. Phys. Status Solidi A 213(6), 1610–1614 (2016)

    Google Scholar 

  85. W. Lundin, A. Nikolaev, A. Sakharov, E. Zavarin, G. Valkovskiy, M. Yagovkina, S. Usov, N. Kryzhanovskaya, V. Sizov, P. Brunkov, Single quantum well deep-green LEDs with buried InGaN/GaN short-period superlattice. J. Cryst. Growth 315(1), 267–271 (2011)

    Google Scholar 

  86. K. Lee, C.-R. Lee, J.H. Lee, T.-H. Chung, M.-Y. Ryu, K.-U. Jeong, J.-Y. Leem, J.S. Kim, Influences of Si-doped graded short-period superlattice on green InGaN/GaN light-emitting diodes. Opt. Express 24(7), 7743–7751 (2016)

    Google Scholar 

  87. Y. Xia, W. Hou, L. Zhao, M. Zhu, T. Detchprohm, C. Wetzel, Boosting green GaInN/GaN light-emitting diode performance by a GaInN underlying layer. IEEE Trans. Electron. Dev. 57(10), 2639–2643 (2010)

    Google Scholar 

  88. L. Hsu, W. Walukiewicz, Effect of polarization fields on transport properties in AlGaN/GaN heterostructures. J. Appl. Phys. 89(3), 1783–1789 (2001)

    Google Scholar 

  89. A. Hangleiter, J.S. Im, H. Kollmer, S. Heppel, J. Off, F. Scholz, The role of piezoelectric fields in GaN-based quantum wells. MRS Internet J. Nitride Semicond. Res. 3, e15 (1998)

    Google Scholar 

  90. C. Wood, D. Jena, Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications (Springer, New York, 2007)

    Google Scholar 

  91. Z. Ning, L. Zhe, S. Zhao, R. Peng, W. Xiao-Dong, F. Xiang-Xu, D. Peng, D. Cheng-Xiao, Z. Shao-Xin, F. Bing-Lei, Reduction of efficiency droop and modification of polarization fields of InGaN-based green light-emitting diodes via Mg-doping in the barriers. Chin. Phys. Lett. 30(8), 087101 (2013)

    Google Scholar 

  92. C.-Y. Huang, Q. Yan, Y. Zhao, K. Fujito, D. Feezell, C.G. Van de Walle, J.S. Speck, S.P. DenBaars, S. Nakamura, Influence of Mg-doped barriers on semipolar (20 2¯ 1) multiple-quantum-well green light-emitting diodes. Appl. Phys. Lett. 99(14), 141114 (2011)

    Google Scholar 

  93. J. Zhang, X.-J. Zhuo, D.-W. Li, L. Yu, K. Li, Y.-W. Zhang, J.-S. Diao, X.-F. Wang, S.-T. Li, Effect of Mg doping in GaN interlayer on the performance of green light-emitting diodes. IEEE Photon. Technol. Lett. 27(2), 117–120 (2015)

    Google Scholar 

  94. Z. Lin, R. Hao, G. Li, S. Zhang, Effect of Si doping in barriers of InGaN/GaN multiple quantum wells on the performance of green light-emitting diodes. Jpn. J. Appl. Phys. 54(2), 022102 (2015)

    Google Scholar 

  95. J.-H. Ryou, J. Limb, W. Lee, J. Liu, Z. Lochner, D. Yoo, R.D. Dupuis, Effect of silicon doping in the quantum-well barriers on the electrical and optical properties of visible green light-emitting diodes. IEEE Photon. Technol. Lett. 20(21), 1769–1771 (2008)

    Google Scholar 

  96. F. Scholz, Semipolar GaN grown on foreign substrates: a review. Semicond. Sci. Technol. 27(2), 024002 (2012)

    Google Scholar 

  97. Z. Wu, A. Fischer, F. Ponce, B. Bastek, J. Christen, T. Wernicke, M. Weyers, M. Kneissl, Structural and optical properties of nonpolar GaN thin films. Appl. Phys. Lett. 92(17), 171904 (2008)

    Google Scholar 

  98. N. Kriouche, P. Vennéguès, M. Nemoz, G. Nataf, P. De Mierry, Stacking faults blocking process in (11− 22) semipolar GaN growth on sapphire using asymmetric lateral epitaxy. J. Cryst. Growth 312(19), 2625–2630 (2010)

    Google Scholar 

  99. H. Zhao, G. Liu, X.-H. Li, R. Arif, G. Huang, J. Poplawsky, S.T. Penn, V. Dierolf, N. Tansu, Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime. IET Optoelectron. 3(6), 283–295 (2009)

    Google Scholar 

  100. H. Zhao, G. Liu, J. Zhang, J.D. Poplawsky, V. Dierolf, N. Tansu, Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt. Express 19(104), A991–A1007 (2011)

    Google Scholar 

  101. Y.-A. Chang, Y.-T. Kuo, J.-Y. Chang, Y.-K. Kuo, Investigation of InGaN green light-emitting diodes with chirped multiple quantum well structures. Opt. Lett. 37(12), 2205–2207 (2012)

    Google Scholar 

  102. H. Zhao, G. Liu, N. Tansu, Analysis of InGaN-delta-InN quantum wells for light-emitting diodes. Appl. Phys. Lett. 97(13), 131114 (2010)

    Google Scholar 

  103. C. Bayram, F.H. Teherani, D. Rogers, M. Razeghi, A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN. Appl. Phys. Lett. 93(8), 081111 (2008)

    Google Scholar 

  104. S. Verma, S.K. Pandey, S.K. Pandey, S. Mukherjee, Theoretical simulation of Hybrid II-O/III-N green light-emitting diode with MgZnO/InGaN/MgZnO heterojunction. Mater. Sci. Semicond. Process. 31, 340–350 (2015)

    Google Scholar 

  105. L. Han, K. Kash, H. Zhao, High-efficiency green light-emitting diodes based on InGaN-ZnGeN 2 type-II quantum wells. Proc. SPIE 2014, 90030 (2014)

    Google Scholar 

  106. Y.-J. Lee, C.-H. Chen, C.-J. Lee, Reduction in the efficiency-droop effect of InGaN green light-emitting diodes using gradual quantum wells. IEEE Photon. Technol. Lett. 22(20), 1506–1508 (2010)

    Google Scholar 

  107. J. Piprek, S. Li, Electron leakage effects on GaN-based light-emitting diodes. Opt. Quant. Electron. 42(2), 89–95 (2010)

    Google Scholar 

  108. N. Zhang, Z. Liu, T. Wei, L. Zhang, X. Wei, X. Wang, H. Lu, J. Li, J. Wang, Effect of the graded electron blocking layer on the emission properties of GaN-based green light-emitting diodes. Appl. Phys. Lett. 100(5), 053504 (2012)

    Google Scholar 

  109. K.J. Vampola, M. Iza, S. Keller, S.P. DenBaars, S. Nakamura, Measurement of electron overflow in 450 nm InGaN light-emitting diode structures. Appl. Phys. Lett. 94(6), 061116 (2009)

    Google Scholar 

  110. L.-B. Chang, M.-J. Lai, R.-M. Lin, C.-H. Huang, Effect of electron leakage on efficiency droop in wide-well InGaN-based light-emitting diodes. Appl. Phys. Express 4(1), 012106 (2011)

    Google Scholar 

  111. J. Piprek, Z. Simon Li, Sensitivity analysis of electron leakage in III-nitride light-emitting diodes. Appl. Phys. Lett. 102(13), 131103 (2013)

    Google Scholar 

  112. H.J. Kim, S. Choi, S.-S. Kim, J.-H. Ryou, P.D. Yoder, R.D. Dupuis, A.M. Fischer, K. Sun, F.A. Ponce, Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes. Appl. Phys. Lett. 96(10), 101102 (2010)

    Google Scholar 

  113. D.-W. Lin, A.-J. Tzou, J.-K. Huang, B.-C. Lin, C.-Y. Chang, H.-C. Kuo, in Greatly improved efficiency droop for InGaN-based green light emitting diodes by quaternary content superlattice electron blocking layer. 2015 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2015). pp. 15–16

    Google Scholar 

  114. C. Wang, S. Chang, P. Ku, J. Li, Y. Lan, C. Lin, H. Yang, H. Kuo, T. Lu, S. Wang, Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers. Appl. Phys. Lett. 99(17), 171106 (2011)

    Google Scholar 

  115. H.C. Lin, G.Y. Lee, H.H. Liu, N.W. Hsu; C.C. Wu, J.I. Chyi, in Polarization-enhanced Mg doping in InGaN/GaN superlattice for green light-emitting diodes. Conference on Lasers and Electro-Optics, Optical Society of America, 2009, p. CMM4

    Google Scholar 

  116. J.-Y. Kim, M.-K. Kwon, S.-J. Park, S. Kim, J.W. Kim, Y.C. Kim, Improving the performance of green LEDs by low-temperature annealing of p-GaN with PdZn. Electrochem. Solid-State Lett. 12(5), H185–H187 (2009)

    Google Scholar 

  117. C. Wang, C. Ke, C. Lee, S. Chang, W. Chang, J. Li, Z. Li, H. Yang, H. Kuo, T. Lu, Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer. Appl. Phys. Lett. 97(26), 261103 (2010)

    Google Scholar 

  118. N. El-Masry, E. Piner, S. Liu, S. Bedair, Phase separation in InGaN grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 72(1), 40–42 (1998)

    Google Scholar 

  119. C. Tran, R. Karlicek, M. Schurman, A. Osinsky, V. Merai, Y. Li, I. Eliashevich, M. Brown, J. Nering, I. Ferguson, Phase separation in InGaN/GaN multiple quantum wells and its relation to brightness of blue and green LEDs. J. Cryst. Growth 195(1), 397–400 (1998)

    Google Scholar 

  120. J. Wang, L. Wang, W. Zhao, Z. Hao, Y. Luo, Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization. Appl. Phys. Lett. 97(20), 201112 (2010)

    Google Scholar 

  121. B. Monemar, B. Sernelius, Defect related issues in the “current roll-off” in InGaN based light emitting diodes. Appl. Phys. Lett. 91(18), 181103 (2007)

    Google Scholar 

  122. I.-K. Park, M.-K. Kwon, J.-O. Kim, S.-B. Seo, J.-Y. Kim, J.-H. Lim, S.-J. Park, Y.-S. Kim, Green light-emitting diodes with self-assembled In-rich InGaN quantum dots. Appl. Phys. Lett. 91(13), 133105 (2007)

    Google Scholar 

  123. H. Jeong, H.J. Jeong, H.M. Oh, C.-H. Hong, E.-K. Suh, G. Lerondel, M.S. Jeong, Carrier localization in In-rich InGaN/GaN multiple quantum wells for green light-emitting diodes. Sci. Rep. 5, 9373 (2015)

    Google Scholar 

  124. A. Hori, D. Yasunaga, A. Satake, K. Fujiwara, Temperature dependence of electroluminescence intensity of green and blue InGaN single-quantum-well light-emitting diodes. Appl. Phys. Lett. 79(22), 3723–3725 (2001)

    Google Scholar 

  125. C.-H. Lu, Y.-C. Li, Y.-H. Chen, S.-C. Tsai, Y.-L. Lai, Y.-L. Li, C.-P. Liu, Output power enhancement of InGaN/GaN based green light-emitting diodes with high-density ultra-small In-rich quantum dots. J. Alloys Compd. 555, 250–254 (2013)

    Google Scholar 

  126. M. Zhang, P. Bhattacharya, W. Guo, InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop. Appl. Phys. Lett. 97(1), 011103 (2010)

    Google Scholar 

  127. W. Lv, L. Wang, L. Wang, Y. Xing, D. Yang, Z. Hao, Y. Luo, InGaN quantum dot green light-emitting diodes with negligible blue shift of electroluminescence peak wavelength. Appl. Phys. Express 7(2), 025203 (2014)

    Google Scholar 

  128. J. Yu, L. Wang, D. Yang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, H. Li, Improving the internal quantum efficiency of green InGaN quantum dots through coupled InGaN/GaN quantum well and quantum dot structure. Appl. Phys. Express 8(9), 094001 (2015)

    Google Scholar 

  129. J. Rong, L. Hai, C. Dun-Jun, R. Fang-Fang, Y. Da-Wei, Z. Rong, Z. You-Dou, Temperature-dependent efficiency droop behaviors of GaN-based green light-emitting diodes. Chin. Phys. B 22(4), 047805 (2013)

    Google Scholar 

  130. K. Bulashevich, S.Y. Karpov, Is auger recombination responsible for the efficiency rollover in III-nitride light-emitting diodes? Phys. Status Solidi C 5(6), 2066–2069 (2008)

    Google Scholar 

  131. Y. Shen, G. Mueller, S. Watanabe, N. Gardner, A. Munkholm, M. Krames, Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91(14), 141101 (2007)

    Google Scholar 

  132. E. Kioupakis, P. Rinke, K.T. Delaney, C.G. Van de Walle, Indirect auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett. 98(16), 161107 (2011)

    Google Scholar 

  133. S. Karpov, ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review. Opt. Quant. Electron. 47(6), 1293–1303 (2015)

    Google Scholar 

  134. F. Nippert, S.Y. Karpov, G. Callsen, B. Galler, T. Kure, C. Nenstiel, M.R. Wagner, M. Straßburg, H.-J. Lugauer, A. Hoffmann, Temperature-dependent recombination coefficients in InGaN light-emitting diodes: hole localization, auger processes, and the green gap. Appl. Phys. Lett. 109(16), 161103 (2016)

    Google Scholar 

  135. A.I. Zhmakin, Enhancement of light extraction from light emitting diodes. Phys. Rep. 498(4), 189–241 (2011)

    Google Scholar 

  136. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç, Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattice. Microst. 48(5), 458–484 (2010)

    Google Scholar 

  137. K. Nakahara, K. Tamura, M. Sakai, D. Nakagawa, N. Ito, M. Sonobe, H. Takasu, H. Tampo, P. Fons, K. Matsubara, Improved external efficiency InGaN-based light-emitting diodes with transparent conductive Ga-doped ZnO as p-electrodes. Jpn. J. Appl. Phys. 43(2A), L180 (2004)

    Google Scholar 

  138. T. Minami, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4), S35 (2005)

    MathSciNet  Google Scholar 

  139. B.-J. Kim, C. Lee, Y. Jung, K. Hyeon Baik, M.A. Mastro, J.K. Hite, C.R. Eddy Jr., J. Kim, Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes. Appl. Phys. Lett. 99(14), 143101 (2011)

    Google Scholar 

  140. Y. Zhang, L. Wang, X. Li, X. Yi, N. Zhang, J. Li, H. Zhu, G. Wang, Annealed InGaN green light-emitting diodes with graphene transparent conductive electrodes. J. Appl. Phys. 111(11), 114501 (2012)

    Google Scholar 

  141. J.-K. Sheu, I.-H. Hung, W.-C. Lai, S.-C. Shei, M. Lee, Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads. Appl. Phys. Lett. 93(10), 103507 (2008)

    Google Scholar 

  142. J.K. Kim, T. Gessmann, H. Luo, E.F. Schubert, GaInN light-emitting diodes with RuO2/SiO2/Ag omni-directional reflector. Appl. Phys. Lett. 84(22), 4508–4510 (2004)

    Google Scholar 

  143. Y. Zhao, D. Hibbard, H. Lee, K. Ma, W. So, H. Liu, Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed Bragg reflector. J. Electron. Mater. 32(12), 1523–1526 (2003)

    Google Scholar 

  144. N. Nakada, M. Nakaji, H. Ishikawa, T. Egawa, M. Umeno, T. Jimbo, Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire. Appl. Phys. Lett. 76(14), 1804–1806 (2000)

    Google Scholar 

  145. C.O. Egalon, R.S. Rogowski, in Increased efficiency LED. Google Patents, 1998

    Google Scholar 

  146. J.H. Lee; B.W. Oh; H.S. Choi; J.T. Oh; S.B. Choi, S.Y. Lee, in Vertical GaN-based LED and method of manufacturing the same. Google Patents, 2008

    Google Scholar 

  147. J.-Y. Kim, M.-K. Kwon, J.-P. Kim, S.-J. Park, Enhanced light extraction from triangular GaN-based light-emitting diodes. IEEE Photon. Technol. Lett. 19(23), 1865–1867 (2007)

    Google Scholar 

  148. J.-W. Pan, C.-S. Wang, Light extraction efficiency of GaN-based LED with pyramid texture by using ray path analysis. Opt. Express 20(105), A630–A640 (2012)

    Google Scholar 

  149. D.-W. Jeon, S.-J. Lee, T. Jeong, J.H. Baek, J.-W. Park, L.-W. Jang, M. Kim, I.-H. Lee, J.-W. Ju, Chemical lift-off of (11–22) semipolar GaN using periodic triangular cavities. J. Cryst. Growth 338(1), 134–138 (2012)

    Google Scholar 

  150. Y.-J. Lee, J. Hwang, T. Hsu, M. Hsieh, M. Jou, B. Lee, T. Lu, H. Kuo, S. Wang, Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates. IEEE Photon. Technol. Lett. 18(10), 1152–1154 (2006)

    Google Scholar 

  151. J.-H. Lee, J. Oh, Y. Kim, J.-H. Lee, Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire. IEEE Photon. Technol. Lett. 20(18), 1563–1565 (2008)

    Google Scholar 

  152. Y. Li, S. You, M. Zhu, W. Hou, Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire. Appl. Phys. Lett. 98(15), 151102 (2011)

    Google Scholar 

  153. S.-J. Chang, Y. Lin, Y.-K. Su, C. Chang, T.-C. Wen, S.-C. Shei, J. Ke, C. Kuo, S. Chen, C. Liu, Nitride-based LEDs fabricated on patterned sapphire substrates. Solid State Electron. 47(9), 1539–1542 (2003)

    Google Scholar 

  154. H. Huang, C. Lin, C. Yu, B. Lee, C. Chiu, C. Lai, H. Kuo, K. Leung, T. Lu, S. Wang, Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography. Nanotechnology 19(18), 185301 (2008)

    Google Scholar 

  155. W.C. Peng, Y.C.S. Wu, Improved luminance intensity of InGaN–GaN light-emitting diode by roughening both the p-Ga N surface and the undoped-GaN surface. Appl. Phys. Lett. 89(4), 041116 (2006)

    Google Scholar 

  156. L. Hui, L. Peixian, S. Huifang, Z. Guangcai, Enhancement of extraction efficiency of green LED via surface roughening. Electron. Sci. Technol. 6, 11 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Zhang, N., Liu, Z. (2019). The InGaN Material System and Blue/Green Emitters. In: Li, J., Zhang, G.Q. (eds) Light-Emitting Diodes. Solid State Lighting Technology and Application Series, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-99211-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99211-2_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99210-5

  • Online ISBN: 978-3-319-99211-2

  • eBook Packages: EngineeringEngineering (R0)