Skip to main content

Reliability of Ultraviolet Light-Emitting Diodes

  • Chapter

Part of the Solid State Lighting Technology and Application Series book series (SSLTA,volume 4)

Abstract

This chapter presents an extensive review of the literature on the degradation processes of GaN-based UV-A, UV-B, and UV-C LEDs. For the state-of-the-art devices, the main open issue is the increase in Shockley–Read–Hall non-radiative recombination inside the quantum well, originating from local generation of defects or from diffusion processes of dopant atoms or foreign impurities. Temperature acts as a significant acceleration factor, especially in lower wavelength devices, affected by a higher turn-on voltage. Changes in the chemical structure of the package and of the encapsulant, induced by the high energy of the photons, may lead to a lower reflectivity and transmittance, thus limiting the overall reliability of the devices.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-99211-2_11
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-99211-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8
Fig. 11.9
Fig. 11.10
Fig. 11.11
Fig. 11.12
Fig. 11.13
Fig. 11.14
Fig. 11.15
Fig. 11.16
Fig. 11.17
Fig. 11.18

References

  1. A.A. Allerman, M.H. Crawford, A.J. Fischer, K.H.A. Bogart, S.R. Lee, D.M. Follstaedt, P.P. Provencio, D.D. Koleske, Growth and design of deep-UV (240-290 nm) light emitting diodes using AlGaN alloys. J. Cryst. Growth 272(1–4), 227–241 (2004). https://doi.org/10.1016/j.jcrysgro.2004.08.035

    CrossRef  Google Scholar 

  2. M. Asif Khan, AlGaN multiple quantum well based deep UV LEDs and their applications. Phys. Status Solidi Appl. Mater. Sci. 203(7), 1764–1770 (2006). https://doi.org/10.1002/pssa.200565427

    CrossRef  Google Scholar 

  3. M. Asif Khan, Deep ultraviolet light emitting diodes with emission below 300 nm. MRS Proc. 892 (2005). https://doi.org/10.1557/PROC-0892-FF01-01

  4. M. Shatalov, Z. Gong, M. Gaevski, S. Wu, W. Sun, V. Adivarahan, M. Asif Khan, Reliability of AlGaN-based deep UV LEDs on sapphire. SPIE 6134, 61340P (2006). https://doi.org/10.1117/12.647204

    CrossRef  Google Scholar 

  5. J.P. Zhang, H.M. Wang, W.H. Sun, V. Adivarahan, S. Wu, A. Chitnis, C.Q. Chen, M. Shatalov, E. Kuokstis, J.W. Yang, M. Asif Khan, High-quality AlGaN layers over pulsed atomic-layer epitaxially grown AlN templates for deep ultraviolet light-emitting diodes. J. Electron. Mater. 32(5), 364–370 (2003). https://doi.org/10.1007/s11664-003-0159-2

    CrossRef  Google Scholar 

  6. Z. Gong, M. Gaevski, V. Adivarahan, W. Sun, M. Shatalov, M. Asif Khan, Optical power degradation mechanisms in AlGaN-based 280 nm deep ultraviolet light-emitting diodes on sapphire. Appl. Phys. Lett. 88(12), 1–4 (2006). https://doi.org/10.1063/1.2187429

    CrossRef  Google Scholar 

  7. Z. Gong, S. Chhajed, M.E. Gaevski, W.H. Sun, V. Adivarahan, M. Shatalov, M. Asif Khan, Reliability and degradation modes of 280 nm deep UV LEDs on sapphire. Mater. Res. Soc. Symp. Proc. 892, 169–174 (2006)

    Google Scholar 

  8. M.L. Reed, M. Wraback, A. Lunev, Y. Bilenko, X. Hu, A. Sattu, J. Deng, M. Shatalov, R. Gaska, Device self-heating effects in deep UV LEDs studied by systematic variation in pulsed current injection. Phys. Status Solidi Curr. Top. Solid State Phys. 5(6), 2053–2055 (2008). https://doi.org/10.1002/pssc.200778402

    CrossRef  Google Scholar 

  9. C.G. Moe, M.L. Reed, G.A. Garrett, A.V. Sampath, T. Alexander, H. Shen, M. Wraback, Y. Bilenko, M. Shatalov, J. Yang, W. Sun, J. Deng, R. Gaska, Current-induced degradation of high performance deep ultraviolet light emitting diodes. Appl. Phys. Lett. 96(21), 213512 (2010). https://doi.org/10.1063/1.3435485

    CrossRef  Google Scholar 

  10. A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, M.S. Shur, Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy. Appl. Phys. Lett. 95(18), 181914 (2009). https://doi.org/10.1063/1.3262964

    CrossRef  Google Scholar 

  11. M. Asif Khan, S. Hwang, J. Lowder, V. Adivarahan, Q. Fareed, Reliability issues in AlGaN based deep ultraviolet light emitting diodes. 2009 IEEE Int. Reliab. Phys. Symp. 89–93. https://doi.org/10.1109/IRPS.2009.5173229

  12. R. Jain, W. Sun, J. Yang, M. Shatalov, X. Hu, A. Sattu, A. Lunev, J. Deng, I. Shturm, Y. Bilenko, R. Gaska, M.S. Shur, Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl. Phys. Lett. 93(5), 110–113 (2008). https://doi.org/10.1063/1.2969402

    CrossRef  Google Scholar 

  13. S. Sawyer, S.L. Rumyantsev, M.S. Shur, Degradation of AlGaN-based ultraviolet light emitting diodes. Solid State Electron. 52(6), 968–972 (2008). https://doi.org/10.1016/j.sse.2008.01.027

    CrossRef  Google Scholar 

  14. G. Meneghesso, S. Levada, E. Zanoni, S. Podda, G. Mura, M. Vanzi, A. Cavallini, A. Castaldini, S. Du, I. Eliashevich, Failure modes and mechanisms of DC-aged GaN LEDs. Phys. Status Solidi 194(2), 389–392 (2002). https://doi.org/10.1002/1521-396X(200212)194:2<389::AID-PSSA389>3.0.CO;2-O

    CrossRef  Google Scholar 

  15. S. Bychikhin, D. Pogany, L.K.J. Vandamme, G. Meneghesso, E. Zanoni, Low-frequency noise sources in as-prepared and aged GaN-based light-emitting diodes. J. Appl. Phys. 97(12), 123714 (2005). https://doi.org/10.1063/1.1942628

    CrossRef  Google Scholar 

  16. X. Chen, A. Pedersen, A.D. van Rheenen, Effect of electrical and thermal stress on low-frequency noise characteristics of laser diodes. Microelectron. Reliab. 41(1), 105–110 (2001). https://doi.org/10.1016/S0026-2714(00)00201-8

    CrossRef  Google Scholar 

  17. A. Pinos, S. Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, M.S. Shur, Optical studies of degradation of AlGaN quantum well based deep ultraviolet light emitting diodes. J. Appl. Phys. 108(9), 93113 (2010). https://doi.org/10.1063/1.3506697

    CrossRef  Google Scholar 

  18. A. Pinos, S. Marcinkevičius, M.S. Shur, High current-induced degradation of AlGaN ultraviolet light emitting diodes. J. Appl. Phys. 109(10) (2011). https://doi.org/10.1063/1.3590149

    CrossRef  Google Scholar 

  19. M. Meneghini, M. Pavesi, N. Trivellin, R. Gaska, E. Zanoni, G. Meneghesso, Reliability of deep-UV light-emitting diodes. IEEE Trans. Device Mater. Reliab. 8(2), 248–254 (2008). https://doi.org/10.1109/TDMR.2008.919570

    CrossRef  Google Scholar 

  20. J.P. Zhang, X. Hu, Y. Bilenko, J. Deng, A. Lunev, M.S. Shur, R. Gaska, M. Shatalov, J.W. Yang, M. Asif Khan, AlGaN-based 280 nm light-emitting diodes with continuous-wave power exceeding 1 mW at 25 mA. Appl. Phys. Lett. 85(23), 5532–5534 (2004). https://doi.org/10.1063/1.1831557

    CrossRef  Google Scholar 

  21. O. Pursiainen, N. Linder, A. Jaeger, R. Oberschmid, K. Streubel, Identification of aging mechanisms in the optical and electrical characteristics of light-emitting diodes. Appl. Phys. Lett. 79(18), 2895–2897 (2001). https://doi.org/10.1063/1.1413721

    CrossRef  Google Scholar 

  22. T. Yanagisawa, T. Kojima, Degradation of InGaN blue light-emitting diodes under continuous and low-speed pulse operations. Microelectron. Reliab. 43(6), 977–980 (2003). https://doi.org/10.1016/S0026-2714(03)00093-3

    CrossRef  Google Scholar 

  23. M. Meneghini, N. Trivellin, L. Trevisanello, A. Lunev, J. Yang, Y. Bilenko, W. Sun, M. Shatalov, R. Gaska, E. Zanoni, G. Meneghesso, Combined optical and electrical analysis of AlGaN-based deep-UV LEDs reliability. IEEE Int. Reliab. Phys. Symp. Proc. 441–445 (2008). https://doi.org/10.1109/RELPHY.2008.4558925

  24. F. Rossi, M. Pavesi, M. Meneghini, G. Salviati, M. Manfredi, G. Meneghesso, A. Castaldini, A. Cavallini, L. Rigutti, U. Strass, U. Zehnder, E. Zanoni, Influence of short-term low current dc aging on the electrical and optical properties of InGaN blue light-emitting diodes. J. Appl. Phys. 99(5), 10–17 (2006). https://doi.org/10.1063/1.2178856

    CrossRef  Google Scholar 

  25. M. Meneghini, D. Barbisan, L. Rodighiero, G. Meneghesso, E. Zanoni, Analysis of the physical processes responsible for the degradation of deep-ultraviolet light emitting diodes. Appl. Phys. Lett. 97(14), 143506 (2010). https://doi.org/10.1063/1.3497082

    CrossRef  Google Scholar 

  26. M. Meneghini, D. Barbisan, Y. Bilenko, M. Shatalov, J. Yang, R. Gaska, G. Meneghesso, E. Zanoni, Defect-related degradation of deep-UV-LEDs. Microelectron. Reliab. 50(9–11), 1538–1542 (2010). https://doi.org/10.1016/j.microrel.2010.07.089

    CrossRef  Google Scholar 

  27. V. Adivarahan, W. Sun, A. Chitnis, M. Shatalov, S. Wu, H. Maruska, M. Asif Khan, 250 nm AlGaN light-emitting diodes. Appl. Phys. Lett. 85(12), 2175 (2004). https://doi.org/10.1063/1.1796525

    CrossRef  Google Scholar 

  28. N. Otsuka, A. Tsujimura, Y. Hasegawa, G. Sugahara, M. Kume, Y. Ban, Room temperature 339 nm emission from Al0.13Ga0.87N/Al0.10Ga0.90N double heterostructure light-emitting diode on sapphire substrate. Jpn. J. Appl. Phys. 39(Part 2, No. 5B), L445–L448 (2000). https://doi.org/10.1143/JJAP.39.L445

    CrossRef  Google Scholar 

  29. J.S. Park, D.W. Fothergill, P. Wellenius, S.M. Bishop, J.F. Muth, R.F. Davis, Origins of parasitic emissions from 353 nm AlGaN-based ultraviolet light emitting diodes over SiC substrates. Jpn J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 45(5 A), 4083–4086 (2006). https://doi.org/10.1143/JJAP.45.4083

    CrossRef  Google Scholar 

  30. J. Grandusky, Y. Cui, S. Gibb, M. Mendrick, L. Schowalter, Performance and reliability of ultraviolet-C pseudomorphic light emitting diodes on bulk AlN substrates. Phys. Status Solidi Curr. Top. Solid State Phys. 7(7–8), 2199–2201 (2010). https://doi.org/10.1002/pssc.200983635

    CrossRef  Google Scholar 

  31. K. Kitamura, J.R. Grandusky, C.G. Moe, J. Chen, M.C. Mendrick, Y. Li, M. Toita, K. Nagase, T. Morishita, H. Ishii, S. Yamada, L.J. Schowalter, S3-P1: reliability and lifetime of pseudomorphic UVC leds on AlN substrate under various stress condition. Lester Eastman Conference 2014High Performance Devices, LEC (2014), pp. 2–6. https://doi.org/10.1109/LEC.2014.6951561

  32. S. Tomiya, T. Hino, S. Goto, M. Takeya, M. Ikeda, Dislocation related issues in the degradation of GaN-based laser diodes. IEEE J. Sel. Top. Quantum Electron. 10(6), 1277–1286 (2004). https://doi.org/10.1109/JSTQE.2004.837735

    CrossRef  Google Scholar 

  33. S.N. Lee, H.S. Paek, J.K. Son, H. Kim, K.K. Kim, K.H. Ha, O.H. Nam, Y. Park, Effects of Mg dopant on the degradation of InGaN multiple quantum wells in AlInGaN-based light emitting devices. J. Electroceram. 23(2–4), 406–409 (2009). https://doi.org/10.1007/s10832-008-9478-2

    CrossRef  Google Scholar 

  34. A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, T. Mukai, High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics. Semicond. Sci. Technol. 29(8), 84005 (2014). https://doi.org/10.1088/0268-1242/29/8/084005

    CrossRef  Google Scholar 

  35. J. Rass, T. Kolbe, N. Lobo Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, M. Kneissl, High power UV-B LEDs with long lifetime. Proc. SPIE Gall. Nitride Mater. Devices X 9363, 93631K (2015). https://doi.org/10.1117/12.2077426

    CrossRef  Google Scholar 

  36. J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. Lobo Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, M. Kneissl, Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature. J. Appl. Phys. 118(9) (2015). https://doi.org/10.1063/1.4929656

    CrossRef  Google Scholar 

  37. J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. Lobo Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, M. Kneissl, Temperature induced degradation of InAlGaN multiple-quantum well UV-B LEDs. MRS Proc. 1792 (2015). https://doi.org/10.1557/opl.2015.446

  38. Q. Shan, D.S. Meyaard, Q. Dai, J. Cho, E. Fred Schubert, J. Kon Son, C. Sone, Transport-mechanism analysis of the reverse leakage current in GaInN light-emitting diodes. Appl. Phys. Lett. 99(25), 253506 (2011). https://doi.org/10.1063/1.3668104

    CrossRef  Google Scholar 

  39. M.W. Moseley, A.A. Allerman, M.H. Crawford, J.J. Wierer, M.L. Smith, A.M. Armstrong, Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes. J. Appl. Phys. 117(9) (2015). https://doi.org/10.1063/1.4908543

    CrossRef  Google Scholar 

  40. K. Orita, S. Takigawa, M. Yuri, T. Tanaka, M. Meneghini, N. Trivellin, L.-R. Trevisanello, E. Zanoni, G. Meneghesso, Analysis of diffusion involved in degradation of InGaN-based laser diodes. 2009 IEEE International Reliability Physics Symposium (2009), pp. 736–740. https://doi.org/10.1109/IRPS.2009.5173340

  41. M. Meneghini, L.-R. Trevisanello, S. Levada, G. Meneghesso, G. Tamiazzo, E. Zanoni, T. Zahner, U. Zehnder, V. Harle, U. Strauss, Failure mechanisms of gallium nitride leds related with passivation. IEEE International Electron Devices Meeting. IEDM Technical Digest (2005), pp. 1009–1012. https://doi.org/10.1109/IEDM.2005.1609534

  42. J. Glaab, N. Lobo Ploch, J. Rass, T. Kolbe, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, C. Stölmacker, V. Kueller, A. Knauer, S. Einfeldt, M. Weyers, M. Kneissl, Influence of the LED heterostructure on the degradation behavior of (InAlGa)N-based UV-B LEDs. SPIE Opto. 9748, 97481O (2016). https://doi.org/10.1117/12.2208906

    CrossRef  Google Scholar 

  43. J.C. Zhang, Y.H. Zhu, T. Egawa, S. Sumiya, M. Miyoshi, M. Tanaka, Suppression of the subband parasitic peak by 1 nm i-AlN interlayer in AlGaN deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 93(13) (2008). https://doi.org/10.1063/1.2996580

    CrossRef  Google Scholar 

  44. T. Kolbe, J. Stellmach, F. Mehnke, M.A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, M. Kneissl, Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes. Phys. Status Solidi Appl. Mater. Sci. 213(1), 210–214 (2016). https://doi.org/10.1002/pssa.201532479

    CrossRef  Google Scholar 

  45. M.L. Nakarmi, N. Nepal, J.Y. Lin, H.X. Jiang, Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys. Appl. Phys. Lett. 94(9), 91903 (2009). https://doi.org/10.1063/1.3094754

    CrossRef  Google Scholar 

  46. D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni, J. Glaab, J. Rass, S. Einfeldt, F. Mehnke, J. Enslin, T. Wernicke, M. Kneissl, Defect-related degradation of AlGaN-Based UV-V LEDs. IEEE Trans. Electron Devices 64(1), 200–205 (2017). https://doi.org/10.1109/TED.2016.2631720

    CrossRef  Google Scholar 

  47. D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni, J. Glaab, J. Rass, S. Einfeldt, F. Mehnke, T. Wernicke, M. Kneissl, L. Institut, U. Berlin, I. Festkörperphysik, Defect generation in deep-UV AlGaN-based LEDs investigated by electrical and spectroscopic characterisation. Proc. SPIE 10124, 1–9 (2017). https://doi.org/10.1117/12.2253843

    CrossRef  Google Scholar 

  48. C. De Santi, M. Meneghini, D. Monti, J. Glaab, M. Guttmann, J. Rass, S. Einfeldt, F. Mehnke, J. Enslin, T. Wernicke, M. Kneissl, G. Meneghesso, E. Zanoni, Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs. Photonics Res. 5(2), 44–51 (2017). https://doi.org/10.1364/PRJ.5.000A44

    CrossRef  Google Scholar 

  49. C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, E. Zanoni, Role of defects in the thermal droop of InGaN-based light emitting diodes. J. Appl. Phys. 119(9), 94501 (2016). https://doi.org/10.1063/1.4942438

    CrossRef  Google Scholar 

  50. W.K. Wang, D.S. Wuu, S.H. Lin, P. Han, R.H. Horng, T.C. Hsu, D.T.C. Huo, M.J. Jou, Y.H. Yu, A. Lin, Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates. IEEE J. Quantum Electron. 41(11), 1403–1409 (2005). https://doi.org/10.1109/JQE.2005.857057

    CrossRef  Google Scholar 

  51. T. Mukai, D. Morita, M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M. Sano, S.I. Nagahama, Investigation of optical-output-power degradation in 365-nm UV-LEDs. Phys. Status Solidi Curr. Top. Solid State Phys. 3(6), 2211–2214 (2006). https://doi.org/10.1002/pssc.200565354

    CrossRef  Google Scholar 

  52. W.H. Liu, C.F. Chu, C.C. Cheng, K.H. Hsu, Y.T. Chung, Y.K. Wang, C.C. Li, J.Y. Chu, F.H. Fan, H.C. Cheng, Y.W. Chen, Y.H. Chang, L.W. Shan, T. Doan, C. Tran, Development of high-power UV LEDs for epoxy curing applications. Proc. SPIE 7602, 76021K (2010). https://doi.org/10.1117/12.845472

    CrossRef  Google Scholar 

  53. W. Lin, T. Wang, S. Ou, J. Liang, D. Wuu, Improved performance of 365-nm LEDs by inserting an un-doped electron-blocking layer. IEEE Electron Device Lett. 35(4), 467–469 (2014). https://doi.org/10.1109/LED.2014.2306711

    CrossRef  Google Scholar 

  54. F.J. Arques-Orobon, N. Nuñez, M. Vazquez, V. González-Posadas, UV LEDs reliability tests for fluoro-sensing sensor application. Microelectron. Reliab. 54(9–10), 2154–2158 (2014). https://doi.org/10.1016/j.microrel.2014.07.059

    CrossRef  Google Scholar 

  55. H. Chen, H.Y. Shen, S.C. Shei, N.C. Kang, H.C. Lai, Y.C. Chu, H.W. Chang, Exploring failure mechanisms of near ultraviolet AlGaN/GaN light-emitting diodes by reverse-bias stress in water vapour. Int. J. Nanotechnol. 12(1/2), 38 (2015). https://doi.org/10.1504/IJNT.2015.066192

    CrossRef  Google Scholar 

  56. D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni, Degradation of UV-A LEDs: physical origin and dependence on stress conditions. IEEE Trans. Device Mater. Reliab. 16(2), 213–219 (2016). https://doi.org/10.1109/TDMR.2016.2558473

    CrossRef  Google Scholar 

  57. T. Li, J. Zhang, H. Wang, Z. Hu, Y. Yu, High-performance light-emitting diodes encapsulated with silica-filled epoxy materials. ACS Appl. Mater. Interfaces 5(18), 8968–8981 (2013). https://doi.org/10.1021/am402035r

    CrossRef  Google Scholar 

  58. M. Yazdan Mehr, W.D. Van Driel, S. Koh, G.Q. Zhang, Reliability and optical properties of LED lens plates under high temperature stress. Microelectron. Reliab. 54(11), 2440–2447 (2014). https://doi.org/10.1016/j.microrel.2014.05.003

    CrossRef  Google Scholar 

  59. J.Y. Bae, Y.H. Kim, H.Y. Kim, Y.B. Kim, J. Jin, B.S. Bae, Ultraviolet light stable and transparent sol-gel methyl siloxane hybrid material for UV light-emitting diode (UV LED) encapsulant. ACS Appl. Mater. Interfaces 7(2), 1035–1039 (2015). https://doi.org/10.1021/am507132a

    CrossRef  Google Scholar 

  60. J.-Y. Bae, H.-Y. Kim, Y.-W. Lim, Y.-H. Kim, B.-S. Bae, Optically recoverable, deep ultraviolet (UV) stable and transparent sol–gel fluoro siloxane hybrid material for a UV LED encapsulant. RSC Adv. 6(32), 26826–26834 (2016). https://doi.org/10.1039/C6RA01346E

    CrossRef  Google Scholar 

  61. Z. Chen, Z. Liu, G. Shen, R. Wen, J. Lv, J. Huo, Y. Yu, Effect of chain flexibility of epoxy encapsulants on the performance and reliability of light-emitting diodes. Ind. Eng. Chem. Res. 55(28), 7635–7645 (2016). https://doi.org/10.1021/acs.iecr.6b01159

    CrossRef  Google Scholar 

  62. R. Wen, J. Huo, J. Lv, Z. Liu, Y. Yu, Effect of silicone resin modification on the performance of epoxy materials for LED encapsulation. J. Mater. Sci. Mater. Electron. 28(14522), 1–14 (2017). https://doi.org/10.1007/s10854-017-7316-5

    CrossRef  Google Scholar 

  63. X. Qiu, J.C.C. Lo, A.W. Shang, S.W.R. Lee, Investigation of reliability of EMC and SMC on reflectance for UV LED applications. 17th International Conference on Thermal Mechanical Multi-Physics Simulation and Expriments in Microelectronics and Microsystems, EuroSimE 2016, vol. 2 (2016), pp. 1–7. https://doi.org/10.1109/EuroSimE.2016.7463398

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo De Santi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

De Santi, C., Monti, D., Dalapati, P., Meneghini, M., Meneghesso, G., Zanoni, E. (2019). Reliability of Ultraviolet Light-Emitting Diodes. In: Li, J., Zhang, G.Q. (eds) Light-Emitting Diodes. Solid State Lighting Technology and Application Series, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-99211-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99211-2_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99210-5

  • Online ISBN: 978-3-319-99211-2

  • eBook Packages: EngineeringEngineering (R0)