Skip to main content

Enhancing Wall-Plug Efficiency for Deep-UV Light-Emitting Diodes: From Crystal Growth to Devices

  • Chapter

Part of the Solid State Lighting Technology and Application Series book series (SSLTA,volume 4)

Abstract

Deep ultraviolet light-emitting diodes (200–280 nm) have many potential applications in diagnostics, therapeutics, security, and tanning. But, the state-of-the-art LEDs suffer from low external quantum efficiency (< 20%). The external quantum efficiency is composed of internal quantum efficiency, injection efficiency, and the light extraction efficiency. These components are limited due to fundamental material and physics-based challenges. In this chapter, a set of novel heterostructure designs are presented to improve the individual efficiency components that compose the external quantum efficiency. Theoretical analysis followed by crystal growth and experimental data are presented showing enhancement of each efficiency components. Inclusion of such new design techniques will enhance the external quantum efficiency of deep-UV light emitters.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-99211-2_10
  • Chapter length: 59 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-99211-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5
Fig. 10.6
Fig. 10.7
Fig. 10.8
Fig. 10.9
Fig. 10.10
Fig. 10.11
Fig. 10.12
Fig. 10.13
Fig. 10.14
Fig. 10.15
Fig. 10.16
Fig. 10.17
Fig. 10.18
Fig. 10.19
Fig. 10.20
Fig. 10.21
Fig. 10.22
Fig. 10.23
Fig. 10.24
Fig. 10.25
Fig. 10.26
Fig. 10.27
Fig. 10.28
Fig. 10.29
Fig. 10.30
Fig. 10.31
Fig. 10.32
Fig. 10.33
Fig. 10.34
Fig. 10.35
Fig. 10.36
Fig. 10.37
Fig. 10.38
Fig. 10.39
Fig. 10.40
Fig. 10.41
Fig. 10.42
Fig. 10.43
Fig. 10.44
Fig. 10.45
Fig. 10.46
Fig. 10.47
Fig. 10.48
Fig. 10.49

References

  1. T. Mukai, D. Morita, S. Nakamura, High-power UV InGaN/AlGaN double-heterostructure LEDs. J. Cryst. Growth 189–190, 778–781 (1998)

    CrossRef  Google Scholar 

  2. J.P. Theodore Moustakas, Gallium-Nitride (GaN) II, Vol. 57 (Academic Press, 1998)

    Google Scholar 

  3. Y. Taniyasu, M. Kasu, T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441(7091), 325–328 (2006)

    CrossRef  Google Scholar 

  4. A. Khan, K. Balakrishnan, T. Katona, Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2(2), 77–84 (2008)

    CrossRef  Google Scholar 

  5. C. Pernot, M. Kim, S. Fukahori, T. Inazu, T. Fujita, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, H. Amano, Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes. Appl. Phys. Express 3(6) (2010)

    CrossRef  Google Scholar 

  6. H. Hirayama, Y. Tsukada, T. Maeda, N. Kamata, Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl. Phys. Express 3(3) (2010)

    CrossRef  Google Scholar 

  7. M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, M. Wraback, AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl. Phys. Express 5(8) (2012)

    CrossRef  Google Scholar 

  8. F. Bernardini, V. Fiorentini, Nonlinear behavior of spontaneous and piezoelectric polarization in III-V nitride alloys. Phys. Status Solidi (a) 190(1), 65–73 (2002)

    CrossRef  Google Scholar 

  9. T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, H. Hirayama, Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl. Phys. Express 10(3) (2017)

    CrossRef  Google Scholar 

  10. M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N.M. Johnson, M. Weyers, Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 26(1) (2011)

    CrossRef  Google Scholar 

  11. J.K. Verma, Polarization and band gap engineered III-nitride optoelectronic device structures. Doctoral Dissertation, University of Notre Dame, 2013

    Google Scholar 

  12. S. Karpov, ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review. Opt. Quant. Electron. 47(6), 1293–1303 (2015)

    CrossRef  Google Scholar 

  13. J. Piprek, Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi (a) 207(10), 2217–2225 (2010)

    CrossRef  Google Scholar 

  14. M.-H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91(18) (2007)

    CrossRef  Google Scholar 

  15. G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, E. Zanoni, Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies. J. Appl. Phys. 114(7) (2013)

    CrossRef  Google Scholar 

  16. S.F. Chichibu, H. Marchand, M.S. Minsky, S. Keller, P.T. Fini, J.P. Ibbetson, S.B. Fleischer, J.S. Speck, J.E. Bowers, E. Hu, U.K. Mishra, S.P. DenBaars, T. Deguchi, T. Sota, S. Nakamura, Emission mechanisms of bulk GaN and InGaN quantum wells prepared by lateral epitaxial overgrowth. Appl. Phys. Lett. 74(10), 1460–1462 (1999)

    CrossRef  Google Scholar 

  17. Q. Dai, M.F. Schubert, M.H. Kim, J.K. Kim, E.F. Schubert, D.D. Koleske, M.H. Crawford, S.R. Lee, A.J. Fischer, G. Thaler, M.A. Banas, Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities. Appl. Phys. Lett. 94(11) (2009)

    Google Scholar 

  18. M. Soltani, R. Soref, T. Palacios, D. Englund, AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range. Opt Express 24(22), 25415–25423 (2016)

    CrossRef  Google Scholar 

  19. H. Hirayama, S. Fujikawa, J. Norimatsu, T. Takano, K. Tsubaki, N. Kamata, Fabrication of a low threading dislocation density ELO-AlN template for application to deep-UV LEDs. Phys. Status Solidi (c) 6(S2), S356–S359 (2009)

    CrossRef  Google Scholar 

  20. M. Conroy, V.Z. Zubialevich, H. Li, N. Petkov, J.D. Holmes, P.J. Parbrook, Epitaxial lateral overgrowth of AlN on self-assembled patterned nanorods. J. Mater. Chem. C 3(2), 431–437 (2015)

    CrossRef  Google Scholar 

  21. V.N. Jmerik, E.V. Lutsenko, S.V. Ivanov, Plasma-assisted molecular beam epitaxy of AlGaN heterostructures for deep-ultraviolet optically pumped lasers. Phys. Status Solidi (a) 210(3), 439–450 (2013)

    CrossRef  Google Scholar 

  22. R. Dalmau, Z. Sitar, AlN bulk crystal growth by physical vapor transport, in Springer Handbook of Crystal Growth, ed. by G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley (Springer, Berlin, Heidelberg, 2010), pp. 821–843

    CrossRef  Google Scholar 

  23. J.S. Speck, S.J. Rosner, The role of threading dislocations in the physical properties of GaN and its alloys. Phys. B Condens. Matter 273–274, 24–32 (1999)

    CrossRef  Google Scholar 

  24. R. Collazo, J. Xie, B.E. Gaddy, Z. Bryan, R. Kirste, M. Hoffmann, R. Dalmau, B. Moody, Y. Kumagai, T. Nagashima, Y. Kubota, T. Kinoshita, A. Koukitu, D.L. Irving, Z. Sitar, On the origin of the 265 nm absorption band in AlN bulk crystals. Appl. Phys. Lett. 100(19) (2012)

    CrossRef  Google Scholar 

  25. R. Dalmau, B. Moody, R. Schlesser, S. Mita, J. Xie, M. Feneberg, B. Neuschl, K. Thonke, R. Collazo, A. Rice, J. Tweedie, Z. Sitar, Growth and characterization of AlN and AlGaN epitaxial films on AlN single crystal substrates. J. Electrochem. Soc. 158(5) (2011)

    Google Scholar 

  26. K. Zhu, M.L. Nakarmi, K.H. Kim, J.Y. Lin, H.X. Jiang, Silicon doping dependence of highly conductive n-type Al0.7Ga0.3N. Appl. Phys. Lett. 85(20), 4669–4671 (2004)

    CrossRef  Google Scholar 

  27. R. France, T. Xu, P. Chen, R. Chandrasekaran, T.D. Moustakas, Vanadium-based Ohmic contacts to n-AlGaN in the entire alloy composition. Appl. Phys. Lett. 90(6) (2007)

    CrossRef  Google Scholar 

  28. J.P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J.W. Yang, M.A. Khan, Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm. Appl. Phys. Lett. 81(26), 4910–4912 (2002)

    CrossRef  Google Scholar 

  29. M.L. Nakarmi, K.H. Kim, M. Khizar, Z.Y. Fan, J.Y. Lin, H.X. Jiang, Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys. Appl. Phys. Lett. 86(9) (2005)

    CrossRef  Google Scholar 

  30. Y. Bilenko, A. Lunev, X. Hu, J. Deng, T.M. Katona, J. Zhang, R. Gaska, M.S. Shur, W. Sun, V. Adivarahan, M. Shatalov, A. Khan, 10 Milliwatt pulse operation of 265 nm AlGaN light emitting diodes. Jpn. J. Appl. Phys. 44(3), L98–L100 (2005)

    CrossRef  Google Scholar 

  31. H. Yu, E. Ulker, E. Ozbay, MOCVD growth and electrical studies of p-type AlGaN with Al fraction 0.35. J. Cryst. Growth 289(2), 419–422 (2006)

    CrossRef  Google Scholar 

  32. T. Kinoshita, T. Obata, H. Yanagi, S.-i. Inoue, High p-type conduction in high-Al content Mg-doped AlGaN. Appl. Phys. Lett. 102(1) (2013)

    CrossRef  Google Scholar 

  33. T. Mori, K. Nagamatsu, K. Nonaka, K. Takeda, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, Crystal growth and p-type conductivity control of AlGaN for high-efficiency nitride-based UV emitters. Phys. Status Solidi (c) 6(12), 2621–2625 (2009)

    CrossRef  Google Scholar 

  34. K.P. Streubel, T. Passow, H. Jeon, R. Gutt, M. Maier, L.-W. Tu, N. Linder, W. Pletschen, M. Kunzer, R. Schmidt, J. Wiegert, D. Luick, S. Liu, K. Köhler, J. Wagner, Ni/Ag as low resistive ohmic contact to p-type AlGaN for UV LEDs, in Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XIV, 2010

    Google Scholar 

  35. B.A. Hull, S.E. Mohney, U. Chowdhury, R.D. Dupuis, Ohmic contacts to p-type Al0.45Ga0.55N. J. Appl. Phys. 96(12), 7325–7331 (2004)

    CrossRef  Google Scholar 

  36. H.-K. Kim, T.-Y. Seong, I. Adesida, C.W. Tang, K.M. Lau, Low-resistance Pt/Pd/Au ohmic contacts to p-type AlGaN. Appl. Phys. Lett. 84(10), 1710–1712 (2004)

    CrossRef  Google Scholar 

  37. M. Shatalov, W. Sun, R. Jain, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, G.A. Garrett, L.E. Rodak, M. Wraback, M. Shur, R. Gaska, High power AlGaN ultraviolet light emitters. Semicond. Sci. Technol. 29(8) (2014)

    CrossRef  Google Scholar 

  38. J. Simon, V. Protasenko, C. Lian, H. Xing, D. Jena, Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327(5961), 60–64 (2010)

    CrossRef  Google Scholar 

  39. J. Verma, P.K. Kandaswamy, V. Protasenko, A. Verma, H. Grace Xing, D. Jena, Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes. Appl. Phys. Lett. 102(4) (2013)

    CrossRef  Google Scholar 

  40. Y. Zhang, A.A. Allerman, S. Krishnamoorthy, F. Akyol, M.W. Moseley, A.M. Armstrong, S. Rajan, Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs. Appl. Phys. Express 9(5) (2016)

    CrossRef  Google Scholar 

  41. N. Maeda, H. Hirayama, Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer. Phys. Status Solidi (c) 10(11), 1521–1524 (2013)

    CrossRef  Google Scholar 

  42. M.R. Krames, M. Ochiai-Holcomb, G.E. Höfler, C. Carter-Coman, E.I. Chen, I.H. Tan, P. Grillot, N.F. Gardner, H.C. Chui, J.W. Huang, S.A. Stockman, F.A. Kish, M.G. Craford, T.S. Tan, C.P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, D. Collins, High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency. Appl. Phys. Lett. 75(16), 2365–2367 (1999)

    Google Scholar 

  43. T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, M. Kneissl, Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure. Appl. Phys. Lett. 103(3) (2013)

    CrossRef  Google Scholar 

  44. Z. Ren, Q. Sun, S.Y. Kwon, J. Han, K. Davitt, Y.K. Song, A.V. Nurmikko, H.K. Cho, W. Liu, J.A. Smart, L.J. Schowalter, Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes. Appl. Phys. Lett. 91(5) (2007)

    CrossRef  Google Scholar 

  45. M. Jo, N. Maeda, H. Hirayama, Enhanced light extraction in 260 nm light-emitting diode with a highly transparent p-AlGaN layer. Appl. Phys. Express 9(1) (2016)

    CrossRef  Google Scholar 

  46. J. Verma, S.M. Islam, V. Protasenko, P. Kumar Kandaswamy, H. Xing, D. Jena, Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures. Appl. Phys. Lett. 104(2) (2014)

    CrossRef  Google Scholar 

  47. S.M. Islam, K. Lee, J. Verma, V. Protasenko, S. Rouvimov, S. Bharadwaj, H. Xing, D. Jena, MBE-grown 232–270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures. Appl. Phys. Lett. 110(4) (2017)

    CrossRef  Google Scholar 

  48. J. Zhang, H. Zhao, N. Tansu, Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers. Appl. Phys. Lett. 97(11) (2010)

    CrossRef  Google Scholar 

  49. T. Kolbe, A. Knauer, C. Chua, Z. Yang, S. Einfeldt, P. Vogt, N.M. Johnson, M. Weyers, M. Kneissl, Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 97(17) (2010)

    CrossRef  Google Scholar 

  50. X.-H. Li, T.-T. Kao, M.M. Satter, Y.O. Wei, S. Wang, H. Xie, S.-C. Shen, P.D. Yoder, A.M. Fischer, F.A. Ponce, T. Detchprohm, R.D. Dupuis, Demonstration of transverse-magnetic deep-ultraviolet stimulated emission from AlGaN multiple-quantum-well lasers grown on a sapphire substrate. Appl. Phys. Lett. 106(4) (2015)

    CrossRef  Google Scholar 

  51. C. Reich, M. Guttmann, M. Feneberg, T. Wernicke, F. Mehnke, C. Kuhn, J. Rass, M. Lapeyrade, S. Einfeldt, A. Knauer, V. Kueller, M. Weyers, R. Goldhahn, M. Kneissl, Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes. Appl. Phys. Lett. 107(14) (2015)

    CrossRef  Google Scholar 

  52. J.E. Northrup, C.L. Chua, Z. Yang, T. Wunderer, M. Kneissl, N.M. Johnson, T. Kolbe, Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells. Appl. Phys. Lett. 100(2) (2012)

    CrossRef  Google Scholar 

  53. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53(22), 2173–2176 (1984)

    CrossRef  Google Scholar 

  54. T. Tetsuya, S. Shigetoshi, K. Maki, K. Miho, T. Hideo, A. Hiroshi, A. Isamu, Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. 36(4A), L382 (1997)

    CrossRef  Google Scholar 

  55. J. Zhang, H. Zhao, N. Tansu, Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes. Appl. Phys. Lett. 98(17) (2011)

    CrossRef  Google Scholar 

  56. D. Bayerl, S.M. Islam, C.M. Jones, V. Protasenko, D. Jena, E. Kioupakis, Deep ultraviolet emission from ultra-thin GaN/AlN heterostructures. Appl. Phys. Lett. 109(24) (2016)

    CrossRef  Google Scholar 

  57. J. Selles, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, B. Gayral, Deep-UV nitride-on-silicon microdisk lasers. Sci. Rep. 6(21650) (2016)

    Google Scholar 

  58. E. Kioupakis, Q. Yan, C.G. Van de Walle, Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes. Appl. Phys. Lett. 101(23) (2012)

    CrossRef  Google Scholar 

  59. J.M. Rondinelli, E. Kioupakis, Predicting and designing optical properties of inorganic materials. Annu. Rev. Mater. Res. 45(1), 491–518 (2015)

    CrossRef  Google Scholar 

  60. J.A. Ferrer-Pérez, B. Claflin, D. Jena, M. Sen, R. Vetury, D. Dorsey, Photoluminescence-based electron and lattice temperature measurements in GaN-based HEMTs. J. Electron. Mater. 43(2), 341–347 (2014)

    CrossRef  Google Scholar 

  61. R. Bhattacharya, B. Pal, B. Bansal, On conversion of luminescence into absorption and the van Roosbroeck-Shockley relation. Appl. Phys. Lett. 100(22) (2012)

    CrossRef  Google Scholar 

  62. L.K. Lee, L. Zhang, H. Deng, P.C. Ku, Room-temperature quantum-dot-like luminescence from site-controlled InGaN quantum disks. Appl. Phys. Lett. 99(26) (2011)

    CrossRef  Google Scholar 

  63. S.M. Islam, V. Protasenko, S. Rouvimov, H. Xing, D. Jena, Sub-230 nm deep-UV emission from GaN quantum disks in AlN grown by a modified Stranski–Krastanov mode. Jpn. J. Appl. Phys. 55(5S) (2016)

    CrossRef  Google Scholar 

  64. C.T. Foxon, C.S. Davis, S.V. Novikov, O.H. Hughes, T.S. Cheng, D. Korakakis, N.J. Jeffs, I. Grzegory, S. Porowski, RHEED studies of group III-Nitrides grown by MBE. Phys. Status Solidi (a) 176(1), 723–726 (1999)

    CrossRef  Google Scholar 

  65. N. Gogneau, D. Jalabert, E. Monroy, E. Sarigiannidou, J.L. Rouvière, T. Shibata, M. Tanaka, J.M. Gerard, B. Daudin, Influence of AlN overgrowth on structural properties of GaN quantum wells and quantum dots grown by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 96(2), 1104–1110 (2004)

    CrossRef  Google Scholar 

  66. D. Doppalapudi, E. Iliopoulos, S.N. Basu, T.D. Moustakas, Epitaxial growth of gallium nitride thin films on A-Plane sapphire by molecular beam epitaxy. J. Appl. Phys. 85(7), 3582–3589 (1999)

    CrossRef  Google Scholar 

  67. Y. Horikoshi, Migration-enhanced epitaxy of GaAs and AlGaAs. Semicond. Sci. Technol. 8(6), 1032 (1993)

    CrossRef  Google Scholar 

  68. C. Adelmann, B. Daudin, R.A. Oliver, G.A.D. Briggs, R.E. Rudd, Nucleation and growth of GaN/AlN quantum dots. Phys. Rev. B 70(12) (2004)

    Google Scholar 

  69. B. Daudin, F. Widmann, G. Feuillet, Y. Samson, M. Arlery, J.L. Rouvière, Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN. Phys. Rev. B 56(12), R7069–R7072 (1997)

    CrossRef  Google Scholar 

  70. Y. Taniyasu, M. Kasu, Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices. Appl. Phys. Lett. 99(25) (2011)

    CrossRef  Google Scholar 

  71. K. Kamiya, Y. Ebihara, K. Shiraishi, M. Kasu, Structural design of AlN/GaN superlattices for deep-ultraviolet light-emitting diodes with high emission efficiency. Appl. Phys. Lett. 99(15) (2011)

    CrossRef  Google Scholar 

  72. Z. Zheng, H. Ji, P. Yu, Z. Wang, Recent progress towards quantum dot solar cells with enhanced optical absorption. Nanoscale Res. Lett. 11(1), 266 (2016)

    Google Scholar 

  73. Y.-K. Kuo, T.-H. Wang, J.-Y. Chang, Advantages of blue InGaN light-emitting diodes with InGaN-AlGaN-InGaN barriers. Appl. Phys. Lett. 100(3) (2012)

    CrossRef  Google Scholar 

  74. T. Passow, K. Leonardi, A. Stockmann, H. Selke, H. Heinke, D. Hommel, High-resolution x-ray diffraction investigations of highly mismatched II-VI quantum wells. J. Phys. D Appl. Phys. 32(10A), A42 (1999)

    CrossRef  Google Scholar 

  75. S. Islam, V. Protasenko, S. Rouvimov, J. Verma, H. Xing, D. Jena, Deep-UV LEDs using polarization-induced doping: Electroluminescence at cryogenic temperatures, in 2015 73rd Annual Device Research Conference (DRC), 21–24 June 2015; 2015; pp 67–68

    Google Scholar 

  76. J. Simon, Y. Cao, D. Jena, Short-period AlN/GaN p-type superlattices: hole transport use in p-n junctions. Phys. Status Solidi (c) 7(10), 2386–2389 (2010)

    CrossRef  Google Scholar 

  77. D. Jena, S. Heikman, D. Green, D. Buttari, R. Coffie, H. Xing, S. Keller, S. DenBaars, J.S. Speck, U.K. Mishra, I. Smorchkova, Realization of wide electron slabs by polarization bulk doping in graded III–V nitride semiconductor alloys. Appl. Phys. Lett. 81(23), 4395–4397 (2002)

    CrossRef  Google Scholar 

  78. J. Yan, J. Wang, P. Cong, L. Sun, N. Liu, Z. Liu, C. Zhao, J. Li, Improved performance of UV-LED by p-AlGaN with graded composition. Phys. Status Solidi (c) 8(2), 461–463 (2011)

    CrossRef  Google Scholar 

  79. S. Li, M.E. Ware, V.P. Kunets, M. Hawkridge, P. Minor, J. Wu, G.J. Salamo, Polarization induced doping in graded AlGaN films. Phys. Status Solidi (c) 8(7–8), 2182–2184 (2011)

    CrossRef  Google Scholar 

  80. S.D. Carnevale, T.F. Kent, P.J. Phillips, M.J. Mills, S. Rajan, R.C. Myers, Polarization-induced pn diodes in wide-band-gap nanowires with ultraviolet electroluminescence. Nano Lett. 12(2), 915–20 (2012)

    CrossRef  Google Scholar 

  81. L. Zhang, X.C. Wei, N.X. Liu, H.X. Lu, J.P. Zeng, J.X. Wang, Y.P. Zeng, J.M. Li, Improvement of efficiency of GaN-based polarization-doped light-emitting diodes grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 98(24) (2011)

    CrossRef  Google Scholar 

  82. A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, P. Kung, M. Razeghi, Top-emission ultraviolet light-emitting diodes with peak emission at 280 nm. Appl. Phys. Lett. 81(5), 801–802 (2002)

    CrossRef  Google Scholar 

  83. A. Yasan, R. McClintock, K. Mayes, D.H. Kim, P. Kung, M. Razeghi, Photoluminescence study of AlGaN-based 280 nm ultraviolet light-emitting diodes. Appl. Phys. Lett. 83(20), 4083–4085 (2003)

    CrossRef  Google Scholar 

  84. A. Chitnis, V. Adivarahan, M. Shatalov, J. Zhang, M. Gaevski, W. Shuai, R. Pachipulusu, J. Sun, K. Simin, G. Simin, J. Yang, M.A. Khan, Submilliwatt operation of AlInGaN based multifinger-design 315 nm Light Emitting Diode (LED) over sapphire substrate. Jpn. J. Appl. Phys. 41(Part 2, No. 3B), L320–L322 (2002)

    CrossRef  Google Scholar 

  85. B. Cheng, S. Choi, J.E. Northrup, Z. Yang, C. Knollenberg, M. Teepe, T. Wunderer, C.L. Chua, N.M. Johnson, Enhanced vertical and lateral hole transport in high aluminum-containing AlGaN for deep ultraviolet light emitters. Appl. Phys. Lett. 102(23) (2013)

    CrossRef  Google Scholar 

  86. F.A.F. Jimy Encomendero, S.M. Islam, V. Protasenko, S. Rouvimov, P. Fay, D. Jena, H.G. Xing, Repeatable room temperature negative differential conductance in GaN/AlN resonant tunneling diodes. arXiv:1606.08100 [cond-mat.mes-hall] (2016)

    Google Scholar 

  87. C. Liu, Y.K. Ooi, S.M. Islam, J. Verma, H. Xing, D. Jena, J. Zhang, Physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well ultraviolet light-emitting diodes. Appl. Phys. Lett. 110(7), 071103 (2017)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SM Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Islam, S. et al. (2019). Enhancing Wall-Plug Efficiency for Deep-UV Light-Emitting Diodes: From Crystal Growth to Devices. In: Li, J., Zhang, G.Q. (eds) Light-Emitting Diodes. Solid State Lighting Technology and Application Series, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-99211-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99211-2_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99210-5

  • Online ISBN: 978-3-319-99211-2

  • eBook Packages: EngineeringEngineering (R0)