Skip to main content

Sedimentary and Biological Patterns on Mudflats

  • Chapter
  • First Online:

Part of the book series: Aquatic Ecology Series ((AQEC,volume 7))

Abstract

Apparently featureless ‘flat’ mudflats actually present striking biological patterning beneath the sediment surface, and even slight physical patterning by sediment ripple marks also leads to biological patterning of the surficial biofilm. The more topographically-complex hummock-forming mudflats are characterized by even more striking physical and biological patterning. In this chapter we first consider how the sediment-microbe association resists wave- and current-induced erosion, creating within-sediment structure (microbially-induced sedimentary structures, MISS). These structures may eventually succumb to high-energy erosion, creating superficial irregularity. We then describe how microbial and physical processes conjugate to form the spatially-complex, transitory hummock patterns. Finally, we summarize the biological patterning which emerges from the sedimentary structure and pattern on both flat and hummock mudflats.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersen TJ, Pejrup M (2011) Biological influences on sediment behavior and transport. In: Wolanski E, McLusky DS (eds) Treatise on estuarine and coastal science, vol 2. Academic, Waltham, pp 289–309

    Chapter  Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality – an explanation of 1/f noise. Phys Rev Lett 59:381–384

    Article  CAS  PubMed  Google Scholar 

  • Beninger PG, Boldina I (2014) Fine-scale spatial distribution of the temperate infaunal bivalve Tapes (=Ruditapes) philippinarum (Adams and Reeve) on fished and unfished intertidal mudflats. J Exp Mar Biol Ecol 457:128–134

    Article  Google Scholar 

  • Blanchard G (1990) Overlapping microscale dispersion patterns of meiofauna and rnicrophytobenthos. Mar Ecol Prog Ser 68:101–111

    Article  Google Scholar 

  • Blanchard GF, Paterson DM, Stal LJ, Richard P, Galois R, Huet V, Kelly J, Honeywill C, de Brouwer J, Dyer K, Christie M, Seguignes M (2000) The effect of geomorphological structures on potential biostabilisation by microphytobenthos on intertidal mudflats. Cont Shelf Res 20:1243–1256

    Article  Google Scholar 

  • Boldina I, Beninger PG (2013) Fine-scale spatial structure of the exploited infaunal bivalve Cerastoderma edule on the French Atlantic coast. J Sea Res 76:193–200

    Article  Google Scholar 

  • Boldina I, Beninger PG (2014) Fine-scale spatial distribution of the common lugworm Arenicola marina, and effects of intertidal clam fishing. Estuar Coast Shelf Sci 143:32–40

    Article  Google Scholar 

  • Boldina I, Beninger PG, Le Coz M (2014) Effect of long-term mechanical perturbation on intertidal soft-bottom meiofunal community spatial structure. J Sea Res 85:85–91

    Article  Google Scholar 

  • Bruslé J (1981) Food and feeding in grey mullets. In: Oren OH (ed) Aquaculture of grey mullets. Cambridge University Press, Cambridge, pp 185–217

    Google Scholar 

  • Cady SL, Noffke N (2009) Geobiology: evidence for early life on earth and the search for life on other planets. GSA Today 19:4–10

    Article  Google Scholar 

  • Carling PA, Williams JJ, Croudace IW, Amos CL (2009) Formation of mud ridge and runnels in the intertidal zone of the Severn Estuary, UK. Cont Shelf Res 29:1913–1926

    Article  Google Scholar 

  • Carpentier A, Como S, Dupuy C, Lefrançois C, Feunteun E (2014) Feeding ecology of Liza spp. in a tidal flat: evidence of the importance of primary production (biofilm) and associated meiofauna. J Sea Res 92:86–91

    Article  Google Scholar 

  • Chapman MG (2000) Poor design of behavioural experiments gets poor results: examples from intertidal habitats. J Exp Mar Biol Ecol 250:77–95

    Article  CAS  PubMed  Google Scholar 

  • Chapman MG, Tolhurst TJ, Murphy RJ, Underwood AJ (2010) Complex and inconsistent patterns of variation in benthos, micro-algae and sediment over multiple spatial scales. Mar Ecol Prog Ser 398:33–47

    Article  CAS  Google Scholar 

  • Cheverie AV, Hamilton DJ, Coffin MRS, Barbeau MA (2014) Effects of shorebird predation and snail abundance on an intertidal mudflat community. J Sea Res 92:102–114

    Article  Google Scholar 

  • Crosetti D, Cataudella S (1994) The mullets. In: Nash CE (ed) Production of aquatic animals: fishes. Elsevier, Amsterdam, pp 253–268

    Google Scholar 

  • Cuadrado DG, Carmona NB, Bournod CA (2011) Biostabilization of sediments by microbial mats in a temperate siliciclastic tidal flat Bahía Blanca estuary (Argentina). Sediment Geol 237:95–101

    Article  Google Scholar 

  • Cuadrado DG, Bournod CN, Pan J, Carmonade NB (2013) Microbially-induced sedimentary structures (MISS) as record of storm action in supratidal modern estuarine setting. Sediment Geol 296:1–8

    Article  Google Scholar 

  • Cuadrado DG, Perillo GME, Vitale AJ (2014) Modern microbial mats in siliciclastic tidal flats: evolution, structure and the role of hydrodynamics. Mar Geol 352:367–380

    Article  Google Scholar 

  • de Brouwer JFC, Bjelic S, Deckere E, Stal LJ (2000) Interplay between biology and sedimentology in a mudflat (Biezelingse Ham, Westerschelde, the Netherlands). Cont Shelf Res 20:1159–1177

    Article  Google Scholar 

  • de los Ríos A, Ascaso C, Wierzchos J (2004) Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Appl Environ Microbiol 70:569–580

    Article  PubMed Central  CAS  Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • Dupuy C, Mallet C, Guizien K, Montanié H, Bréret M, Mornet F, Fontaine C, Nérota C, Orvainf F (2014) Sequential resuspension of biofilm components (viruses, prokaryotes and protists) as measured by erodimetry experiments in the Brouage mudflat (French Atlantic coast). J Sea Res 92:56–65

    Article  Google Scholar 

  • Eriksson PG, Porada H, Banerjee S, Bouougri E, Sarkar S, Bumby AJ (2007) Mat-destruction features. In: Schieber J, Bose P, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds) Atlas of microbial mat features preserved within the siliciclastic rock record. Elsevier, Amsterdam, pp 76–105

    Google Scholar 

  • Fang H, Shang Q, Chen M, He G (2014) Changes in the critical erosion velocity for sediment colonized by biofilm. Sedimentology 61:648–659

    Article  Google Scholar 

  • Fenchel T, Kühl M (2000) Artificial cyanobacterial mats: growth, structure, and vertical zonation patterns. Microb Ecol 40:85–93

    CAS  PubMed  Google Scholar 

  • Fernández EM, Spetter CV, Martinez A, Cuadrado DG, Avena MJ, Marcovecchio JE (2016) Carbohydrate production by microbial mats communities in tidal flat from Bahía Blanca Estuary (Argentina). Environ Earth Sci 75:641

    Article  CAS  Google Scholar 

  • Findlay SEG (1981) Small-scale spatial distribution of meiofauna on a mud- and sandflat. Estuar Coast Shelf Sci 12:471–484

    Article  Google Scholar 

  • Findlay SEG (1982) Influence of sampling scale on apparent distribution of meiofauna on a sandflat. Estuaries 5:322–324

    Article  Google Scholar 

  • Flach EC (1992) Disturbance of benthic infauna by sediment-reworking activities of the lugworm Arenicola marina. Neth J Sea Res 30:81–89

    Article  Google Scholar 

  • Flach EC, Beukema JJ (1994) Density-governing mechanisms in populations of the lugworm Arenicola marina on tidal flats. Mar Ecol Prog Ser 115:139–149

    Article  Google Scholar 

  • Flach EC, de Bruin W (1993) Effects of Arenicola marina and Cerastoderma edule on distribution, abundance and population structure of Corophium volutator in Gullmarsfjorden, Western Sweden. Sarsia 78:105–118

    Article  Google Scholar 

  • Folk RL, Andrews PB, Lewis DW (1970) Detrital sedimentary rock classification and nomenclature for use in New Zealand. N Z J Geol Geophys 13:937–968

    Article  Google Scholar 

  • Friend PL, Lucas CH, Holligan PM, Collins MB (2008) Microalgal mediation of ripple mobility. Geobiology 6:70–82

    CAS  PubMed  Google Scholar 

  • Gerdes G (2007) Structures left by modern microbial mats in their host sediments. In: Schieber J, Bose P, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds) Atlas of microbial mat features preserved within the clastic rock record. Elsevier, Amsterdam, pp 5–38

    Google Scholar 

  • Guichard F, Halpin PM, Allison GW, Lubchenco J, Menge BA (2003) Mussel disturbance dynamics: signatures of oceanographic forcing from local interactions. Am Nat 161:889–904

    Article  PubMed  Google Scholar 

  • Hagadorn JW, McDowell C (2012) Microbial influence on erosion, grain transport and bedform genesis in sandy substrates under unidirectional flow. Sedimentology 59:795–808

    Article  Google Scholar 

  • Hall-Stoodley L, Stoodley P (2002) Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13:228–233

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  • Hjülstrøm F (1935) Studies of the morphological activity of rivers as illustrated by the river Fyris. Bull Geol Inst Univ Uppsala 25:221–528

    Google Scholar 

  • Jiménez A, Elner RW, Favaro C, Rickards K, Ydenberg RC (2015) Intertidal biofilm distribution underpins differential tide-following behavior of two sandpiper species (Calidris mauri and Calidris alpina) during northward migration. Estuar Coast Shelf Sci 155:8–16

    Article  Google Scholar 

  • Jørgensen BB (1994) Diffusion processes and boundary layers in microbial mats. In: Stal LJ, Caumette P (eds) Microbial mats. NATO ASI series (Series G: Ecological sciences), vol 35. Springer, Berlin

    Google Scholar 

  • Kaźmierczak J, Fenchel T, Kühl M, Kempe S, Kremer B, Łącka B, Małkowski K (2015) CaCO3 precipitation in multilayered cyanobacterial mats: clues to explain the alternation of micrite and sparite layers in calcareous stromatolites. Life 5:744–769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krumbein WE (1979) Photolithotrophic and chemoorganotrophic activity of bacteria and algae as related to beach rock formation and degradation (Gulf of Aqaba, Sinai). Geomicrobiol J 1:139–203

    Article  CAS  Google Scholar 

  • Lanuru M, Riethmüller R, Bernem C, Heymann K (2007) The effect of bedforms (crest and trough systems) on sediment erodibility on a back-barrier tidal flat of the East Frisian Wadden Sea, Germany. Estuar Coast Shelf Sci 72:603–614

    Article  Google Scholar 

  • Li B, Cozzoli F, Soissons LM, Boumab TJ, Chen L (2017) Effects of bioturbation on the erodibility of cohesive versus non-cohesive sediments along a current-velocity gradient: a case study on cockles. J Exp Mar Biol Ecol 496:84–90

    Article  Google Scholar 

  • Lubarsky HV, Hubas C, Chocholek M, Larson F, Manz W, Paterson DM, Gerbersdorf SU (2010) The stabilisation potential of individual and mixed assemblages of natural bacteria and microalgae. PLoS One 5(11):e13794. https://doi.org/10.1371/journal.pone.0013794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen KN, Nilson P, Sundbäck K (1993) The influence of benthic microalgae on the stability of a subtidal shallow water sediment. J Exp Mar Biol Ecol 170:159–177

    Article  Google Scholar 

  • Miller DC, Geider RJ, MacIntyre HL (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II Role in sediment stability and shallow-water food webs. Estuaries 19:202–212

    Article  Google Scholar 

  • Murphy RJ, Tolhurst TJ, Chapman MG, Underwood AJ (2008) Spatial variation of chlorophyll on estuarine mudflats determined by field-based remote sensing. Mar Ecol Prog Ser 365:45–55

    Article  CAS  Google Scholar 

  • Neu TR (1994) Biofilms and microbial mats. In: Krumbein WE, Paterson D, Stal L (eds) Biostabilization of sediments. Oldenburg, BIS-Verlag, pp 9–17

    Google Scholar 

  • Neumeier M, Weigert J, Schaffler A, Wehrwein G, Muller-Ladner U, Scholmerich J, Wrede C, Buechler C (2006) Different effects of adiponectin isoforms in human monocytic cells. J Leukoc Biol 79:803–808

    Article  CAS  PubMed  Google Scholar 

  • Noffke N (2010) Microbial mats in sandy deposits from the Archean era to today. Springer, Berlin

    Google Scholar 

  • Noffke N, Awramik SM (2013) Stromatolites and MISS—differences between relatives. GSA Today 23:4–9

    Article  Google Scholar 

  • Noffke N, Krumbein WE (1999) A quantitative approach to sedimentary surface structures contoured by the interplay of microbial colonization and physical dynamics. Sedimentology 46:417–426

    Article  Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein WE (2001) Microbially induced sedimentary structures-a new category within the classification of primary sedimentary structures. J Sediment Res 71:649–656

    Article  Google Scholar 

  • Noffke N, Knoll AH, Grotzinger JP (2002) Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: a case study from the Upper Neoproterozoic Nama Group, Namibia. Palaios 17:533–544

    Article  Google Scholar 

  • Noffke N, Christian D, Wacey D, Hazen RM (2013a) Microbially induced sedimentary structures recording a complex microbial ecosystem in the 3.5 Ga Dresser Formation, Pilbara, Western Australia. Astrobiology 13:1–22

    Article  CAS  Google Scholar 

  • Noffke N, Decho AW, Stoodley P (2013b) Slime through time: the fossil record of prokaryote evolution. PALAIOS 28:1–5

    Article  Google Scholar 

  • Pan J, Bournod CN, Pizani NV, Cuadrado DG, Carmona NB (2013) Characterization of microbial mats from a siliciclastic tidal flat (Bahía Blanca estuary, Argentina). Geomicrobiol J 30:665–674

    Article  CAS  Google Scholar 

  • Pascual M, Guichard F (2005) Criticality and disturbance in spatial ecological systems. Trends Ecol Evol 20:88–95

    Article  PubMed  Google Scholar 

  • Passarelli C, Olivier F, Paterson DM, Meziane T, Hubas C (2014) Organisms as cooperative ecosystem engineers in intertidal flats. J Sea Res 92:92–101

    Article  Google Scholar 

  • Paterson DM (1995) Biogenic structure of early sediment fabric visualized by low temperature scanning electron microscopy. J Geol Soc 152:131–140

    Article  Google Scholar 

  • Pierre G, Zhao J, Orvain F, Dupuy C, KleinGL GM, Maugard T (2014) Seasonal dynamics of extracellular polymeric substances (EPS) in surface sediments of a diatom-dominated intertidal mudflat (Marennes-Oléron France). J Sea Res 92:26–35

    Article  Google Scholar 

  • Rietkerk M, van de Koppel J (2008) Regular pattern formation in real ecosystems. Trends Ecol Evol 23:169–175

    Article  PubMed  Google Scholar 

  • Rodrigues AM, Meireles S, Pereira T, Gama A, Quintino V (2006) Spatial patterns of benthic macroinvertebrates in intertidal areas of a Southern European estuary: the Tagus, Portugal. Hydrobiologia 555:99–113

    Article  Google Scholar 

  • Schieber J, Bose PK, Eriksson PG, Sarkar S (2007) Paleogeography of microbial mats in terrigenous clastic-environmental distribution of associated sedimentary features and the role of geologic time. In: Schieber J, Bose P, Eriksson PG, Bannerjee S, Sarkar S, Altermann W, Catuneau O (eds) Atlas of microbial mat features preserved within the siliciclastic rock record. Elsevier, Amsterdam, pp 267–275

    Google Scholar 

  • Schultze-Lam S, Fortin D, Davis BS, Beveridge TJ (1996) Mineralization of bacterial surfaces. Chem Geol 132:171–181

    Article  CAS  Google Scholar 

  • Seuront L, Spilmont N (2002) Self-organized criticality in intertidal microphytobenthos patch patterns. Phys A Stat Mech Appl 313:513–539

    Article  CAS  Google Scholar 

  • Shields A (1936) Application of similarity principles and turbulence research to bed-load movement. Mitt Preussischen Versuchsanstalt fur Wasserbau und Schiffbau 26:5–24

    Google Scholar 

  • Stal LJ (2010) Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization. Ecol Eng 36:236–245

    Article  Google Scholar 

  • Stal LJ, de Brouwer JFC (2003) Biofilm formation by benthic diatoms and their influence on the stabilization of intertidal mudflats. Berichte-Forschungszentrum Terramare 12:109–111

    Google Scholar 

  • Stal LJ, de Brouwer JFC (2005) Diatom biofilms and the stability of intertidal mudflats. Geophys Res Abstr 7:20–28

    Google Scholar 

  • Steele DJ, Franklin DJ, Underwood JC (2014) Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms. Biofouling 30:987–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolz J (2000) Structure of microbial mats and biofilms. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 1–8

    Google Scholar 

  • Stoodley P (2016) Flow disrupts communication. Nat Microbiol 1:15012

    Article  CAS  PubMed  Google Scholar 

  • Stoodley P, Dodds I, Boyle JD, Lappin-Scott HM (1999) Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85:19S–28S

    Article  Google Scholar 

  • Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I (2002) Biofilm material properties as related to shearinduced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367

    Article  CAS  PubMed  Google Scholar 

  • Tolhurst TJ, Watts CW, Vardy S, Saunders JE, Consalvey MC, Paterson DM (2008) The effects of simulated rain on the erosion threshold and biogeochemical properties of intertidal sediments. Cont Shelf Res 28:1217–1230

    Article  Google Scholar 

  • Ubertini M, Lefebvre S, Rakotomalala C, Orvain F (2015) Impact of sediment grain-size and biofilm age on epipelic microphytobenthos resuspension. J Exp Mar Biol Ecol 467:52–64

    Article  Google Scholar 

  • Underwood GJC (1997) Microalgal colonization in a salt-marsh restoration scheme. Estuar Coast Shelf Sci 44:471–481

    Article  CAS  Google Scholar 

  • Underwood GJC, Kromkamp J (1999) Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res 29:93–153

    Article  CAS  Google Scholar 

  • Underwood GJC, Paterson DM (2003) The importance of extracellular carbohydrate production by marine epipelic diatoms. Adv Bot Res 40:184–240

    Google Scholar 

  • Underwood GJC, Smith DJ (1998) Predicting epipelic diatom exopolymer concentrations in intertidal sediments from sediment chlorophyll a. Microb Ecol 35:116–125

    Article  CAS  PubMed  Google Scholar 

  • Underwood GJC, Paterson DM, Parkes RJ (1995) The measurement of microbial carbohydrate exopolymers from intertidal sediments. Limnol Oceanogr 40:1243–1253

    Article  CAS  Google Scholar 

  • Underwood GJC, Boulcott M, Raines CA, Waldron K (2004) Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition, and pathways of production. J Phycol 40:293–304

    Article  CAS  Google Scholar 

  • Van Colen C, Underwood GJC, Serôdio J, Paterson DM (2014) Ecology of intertidal microbial biofilms: mechanisms patterns and future research needs. J Sea Res 92:2–5

    Article  Google Scholar 

  • Van de Koppel J, Herman PMJ, Thoolen P, Heip CHR (2001) Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat. Ecology 82:3449–3461

    Article  Google Scholar 

  • van der Wal D, Herman PMJ, Forster RM, Ysebaert T, Rossi F, Knaeps E, Plancke YMG, Ides SJ (2008) Distribution and dynamics of intertidal macrobenthos predicted from remote sensing: response to microphytobenthos and environment. Mar Ecol Prog Ser 367:57–72

    Article  Google Scholar 

  • Van Gemerden H (1993) Microbial mats: a joint venture. Mar Geol 113:3–25

    Article  Google Scholar 

  • Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations processes and products. Palaeogeogr Palaeoclimatol Palaeoecol 219:87–100

    Article  Google Scholar 

  • Wahl WK, Lok T, van der Meer J, Piersm T, Weissing J (2005) Spatial clumping of food and social dominance affect interference competition among ruddy turnstones. Behav Ecol 16:834–844

    Article  Google Scholar 

  • Weerman EJ, van de Koppel J, Eppinga MB, Montserrat F, Liu QX, Herman PMJ (2010) Spatial self-organization on intertidal mudflats through biophysical stress divergence. Am Nat 176:15–32

    Article  Google Scholar 

  • Weerman EJ, Herman PMJ, van de Koppel J (2011a) Macrobenthos abundance and distribution on a spatially patterned intertidal flat. Mar Ecol Prog Ser 440:95–103

    Article  Google Scholar 

  • Weerman EJ, Herman PMJ, van de Koppel J (2011b) Top-down control inhibits spatial self-organization of a patterned landscape. Ecology 92:487–495

    Article  PubMed  Google Scholar 

  • Weerman EJ, Van Belzen J, Rietkerk M, Temmerman S, Kefi S, Herman PMJ, Van de Koppel J (2012) Changes in diatom patch-size distribution and degradation in a spatially self-organized intertidal mudflat ecosystem. Ecology 93:608–618

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse R, Bassoullet P, Dyer K, Mitchener H, Roberts W (2000) The influence of bedforms on flow and sediment transport over intertidal mudflats. Cont Shelf Res 20:1099–1124

    Article  Google Scholar 

  • Wolf G (2007) Kinetic modeling of phototrophic biofilms: the PHOBIA model. Biotechnol Bioeng 97:1064–1079

    Article  CAS  PubMed  Google Scholar 

  • Yallop ML, de Winder B, Paterson DM, Stal LJ (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar Coast Shelf Sci 39:565–582

    Article  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Nora Noffke and Prof. David Paterson for very helpful discussions during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Beninger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beninger, P.G., Cuadrado, D., van de Koppel, J. (2018). Sedimentary and Biological Patterns on Mudflats. In: Beninger, P. (eds) Mudflat Ecology. Aquatic Ecology Series, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-99194-8_8

Download citation

Publish with us

Policies and ethics