Meiofauna: An Inconspicuous but Important Player in Mudflat Ecology

  • Tom Moens
  • Peter G. BeningerEmail author
Part of the Aquatic Ecology Series book series (AQEC, volume 7)


Due to their inconvenient size and nature (too small for easy whole-organism work; too large for, and not amenable to, most microbiology techniques), meiofauna tend to perpetually slip through the cracks of mainstream marine ecology. The resulting knowledge gap is probably as considerable as the ecological importance of this group. In this chapter we first present the available techniques for sampling, extraction, and preservation of mudflat meiofauna, and then consider their spatial and temporal dynamics. Although their trophic ecology is obviously of prime importance, meiofauna influence the mudflat ecosystem through many other types of interactions which, at least in part, result from their high taxonomic and functional diversity. These include cryptobioturbation, which has far-reaching effects on sediment characteristics and stability; microbial grazing and fecal pellet production, which impact mudflat microbial ecology and nutrient cycling; and meiofauna-macrofauna interactions, which evolve as the macrofauna grow and develop. An increased awareness of the roles of meiofauna is essential to a comprehensive understanding of mudflat ecology.


  1. Aarnio K, Bonsdorff E, Norkko A (1998) Role of Halicryptus spinulosus (Priapulida) in structuring meiofauna and settling macrofauna. Mar Ecol Prog Ser 163:145–153CrossRefGoogle Scholar
  2. Albuquerque EF, Pinto APB, Perez AQ, Veloso VG (2007) Spatial and temporal changes in interstitial meiofauna on a sandy ocean beach of South America. Braz J Oceanogr 55:121–131CrossRefGoogle Scholar
  3. Alkemade R, Wielemaker A, Hemminga MA (1992a) Stimulation of decomposition of Spartina anglica leaves by the bacterivorous marine nematode Diplolaimelloides bruciei (Monhysteridae). J Exp Mar Biol Ecol 159:267–278CrossRefGoogle Scholar
  4. Alkemade R, Wielemaker A, de Jong SA, Sandee AJJ (1992b) Experimental evidence for the role of bioturbation by the marine nematode Diplolaimella dievengatensis in stimulating the mineralization of Spartina anglica detritus. Mar Ecol Prog Ser 90:149–155CrossRefGoogle Scholar
  5. Aller RC, Aller JY (1992) Meiofauna and solute transport in marine muds. Limnol Oceanogr 37:1018–1033CrossRefGoogle Scholar
  6. Armonies W, Hellwig M (1986) Quantitative extraction of living meiofauna from marine and brackish muddy sediments. Mar Ecol Prog Ser 29:37–43CrossRefGoogle Scholar
  7. Armonies W, Reise K (2000) Faunal diversity across a sandy shore. Mar Ecol Prog Ser 196:49–57CrossRefGoogle Scholar
  8. Austen MC, Warwick RM (1995) Effects of manipulation of food-supply on estuarine meiobenthos. Hydrobiologia 311:175–184CrossRefGoogle Scholar
  9. Austen MC, Widdicombe S (1998) Experimental evidence of effects of the heart urchin Brissopsis lyrifera on associated subtidal meiobenthic nematode communities. J Exp Mar Biol Ecol 222:219–238CrossRefGoogle Scholar
  10. Austen MC, Warwick RM, Ryan KP (1993) Astomonema southwardorum sp. nov. a gutless nematode dominant in a methane seep area in the North Sea. J Mar Biol Assoc UK 73:627–634CrossRefGoogle Scholar
  11. Austen MC, Widdicombe S, Villano-Pitacco N (1998) Effects of biological disturbance on diversity and structure of meiobenthic nematode communities. Mar Ecol Prog Ser 174:233–246CrossRefGoogle Scholar
  12. Azovsky AI, Saburova MA, Chertoprud ES, Polikarpov IG (2005) Selective feeding of littoral harpacticoids on diatom algae: hungry gourmands? Mar Biol 148:327–337CrossRefGoogle Scholar
  13. Baermann G (1917) Eine einfache Methode zur Auffindung von Ankylostomum- (Nematoden)-Larven in Erdproben. Geneeskundig Laboratorium Feestbundel, Weltevreden Batavia, pp 41–47Google Scholar
  14. Barnett BE (1980) A physico-chemical method for the extraction of marine and estuarine benthos from clays and resistant muds. J Mar Biol Assoc U K 60:255CrossRefGoogle Scholar
  15. Bayer C, Heindl NR, Rinke C, Lucker S, Ott JA, Bulgheresi S (2009) Molecular characterization of the symbionts associated with marine nematodes of the genus Robbea. Environ Microbiol Rep 1:136–144PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bedino JH (2003) Embalming chemistry: glutaraldehyde versus formaldehyde. Champ Expand Enc Mortu Pract 649:2614–2632Google Scholar
  17. Beknazarova M, Millsteed S, Robertson G, Whiley H, Ross K (2017) Validation of DESS as a DNA preservation method for the detection of Strongyloides spp. in canine feces. Int J Environ Res Public Health 14:e624PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bernhard JM, Ostermann DR, Williams DS, Blanks JK (2006) Comparison of two methods to identify live benthic Foraminifera: a test between Rose Bengal and CellTracker Green with implications for stable isotope paleoreconstructions. Paleoceanography 21:1–8CrossRefGoogle Scholar
  19. Blanchard GF (1990) Overlapping microscale dispersion patterns of meiofauna and microphytobenthos. Mar Ecol Prog Ser 68:101–111CrossRefGoogle Scholar
  20. Boaden PJS, Platt HM (1971) Daily migration patterns in an intertidal meiobenthic community. Thalass Jugosl 7:1–12Google Scholar
  21. Boeckner MJ, Sharma J, Proctor HC (2009) Revisiting the meiofauna paradox: dispersal and colonization of nematodes and other meiofaunal organisms in low- and high-energy environments. Hydrobiologia 624:91–106CrossRefGoogle Scholar
  22. Boldina I, Beninger PG, Le Coz M (2014) Effect of long-term mechanical perturbation on intertidal soft-bottom meiofunal community spatial structure. J Sea Res 85:85–91CrossRefGoogle Scholar
  23. Bonaglia S, Nascimento FJA, Bartoli M, Klawonn I, Bruchert V (2014) Meiofauna increases bacterial denitrification in marine sediments. Nat Commun 5:e5133CrossRefGoogle Scholar
  24. Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bouillon S, Connolly RM, Lee SY (2008) Organic matter exchange and cycling in mangrove ecosystems: recent insights from stable isotope studies. J Sea Res 59:44–58CrossRefGoogle Scholar
  26. Braeckman U, Provoost P, Moens T, Soetaert K, Middelburg JJ, Vincx M, Vanaverbeke J (2011a) Biological vs. physical mixing effects on benthic food web dynamics. PLoS One 6:e18078PubMedPubMedCentralCrossRefGoogle Scholar
  27. Braeckman U, Van Colen C, Soetaert K, Vincx M, Vanaverbeke J (2011b) Contrasting macrobenthic activities differentially affect nematode density and diversity in a shallow subtidal marine sediment. Mar Ecol Prog Ser 422:179–191CrossRefGoogle Scholar
  28. Braeckman U, Vanaverbeke J, Vincx M, Van Oevelen D, Soetaert K (2013) Meiofauna metabolism in suboxic sediments: currently overestimated. PLoS One 8:e59289PubMedPubMedCentralCrossRefGoogle Scholar
  29. Brandes JA, Devol AH, Deutsch C (2007) New developments in the marine nitrogen cycle. Chem Rev 107:577–589PubMedCrossRefPubMedCentralGoogle Scholar
  30. Buffan-Dubau E, Carman KR (2000) Diel feeding behaviour of meiofauna and their relationships with microalgal resources. Limnol Oceanogr 45:381–395CrossRefGoogle Scholar
  31. Buffan-Dubau E, deWit R, Castel J (1996) Feeding selectivity of the harpacticoid copepod Canuella perplexa in benthic muddy environments demonstrated by HPLC analyses of chlorin and carotenoid pigments. Mar Ecol Prog Ser 137:71–82CrossRefGoogle Scholar
  32. Burgess B (2001) An improved protocol for separating meiofauna from sediments using colloidal silica sols. Mar Ecol Prog Ser 214:161–165CrossRefGoogle Scholar
  33. Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5:89–96CrossRefGoogle Scholar
  34. Callaway R (2006) Tube worms promote community change. Mar Ecol Prog Ser 308:49–60CrossRefGoogle Scholar
  35. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67PubMedCrossRefPubMedCentralGoogle Scholar
  36. Carpentier A, Como S, Dupuy C, Lefrancois C, Feunteun E (2014) Feeding ecology of Liza spp. in a tidal flat: evidence of the importance of primary production (biofilm) and associated meiofauna. J Sea Res 92:86–91CrossRefGoogle Scholar
  37. Caulle C, Koho KA, Mojtahid M, Reichart GJ, Jorissen FJ (2014) Live (Rose Bengal stained) foraminiferal faunas from the northern Arabian Sea: faunal succession within and below the OMZ. Biogeosciences 11:1155–1175CrossRefGoogle Scholar
  38. Chandler GT, Fleeger JW (1987) Facilitative and inhibitory interactions among estuarine meiobenthic harpacticoid copepods. Ecology 68:1906–1919PubMedCrossRefPubMedCentralGoogle Scholar
  39. Cleven EJ (1999) An improved method for taking cores in sandy sediments. Arch Hydrobiol 147:65–72CrossRefGoogle Scholar
  40. Cnudde C (2014) Trophic ecology of intertidal harpacticoid copepods, with emphasis on their interactions with bacteria. PhD thesis, Ghent University, 209 pGoogle Scholar
  41. Cnudde C, Clavano CJS, Moens T, Willems A, De Troch M (2013a) Structural and functional patterns of active bacterial communities during aging of harpacticoid copepod fecal pellets. Aquat Microb Ecol 71:25–42CrossRefGoogle Scholar
  42. Cnudde C, Moens T, Hoste B, Willems A, De Troch M (2013b) Limited feeding on bacteria by two intertidal benthic copepod species as revealed by trophic biomarkers. Environ Microbiol Rep 5:301–309PubMedCrossRefPubMedCentralGoogle Scholar
  43. Cnudde C, Moens T, Willems A, De Troch M (2013c) Substrate-dependent bacterivory by intertidal benthic copepods. Mar Biol 160:327–341CrossRefGoogle Scholar
  44. Cnudde C, Moens T, Werbrouck E, Lepoint G, Van Gansbeke D, De Troch M (2015) Trophodynamics of estuarine intertidal harpacticoid copepods based on stable isotope composition and fatty acid profiles. Mar Ecol Prog Ser 524:225–239CrossRefGoogle Scholar
  45. Commito JA, Tita G (2002) Differential dispersal rates in an intertidal meiofauna assemblage. J Exp Mar Biol Ecol 268:237–256CrossRefGoogle Scholar
  46. Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Ecology controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015PubMedCrossRefPubMedCentralGoogle Scholar
  47. Connell JH (1978) Diversity in tropical rain forests and coral reefs – high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199:1302–1310CrossRefGoogle Scholar
  48. Couch CA (1988) A procedure for extracting large numbers of debris-free, living nematodes from muddy marine sediments. Trans Am Microsc Soc 107:96–100CrossRefGoogle Scholar
  49. Coull BC (1985) Long-term variability of estuarine meiobenthos: an 11 year study. Mar Ecol Prog Ser 24:205–218CrossRefGoogle Scholar
  50. Coull BC (1986) Long-term variability of meiobenthos: value, synopsis, hypothesis generation and predictive modelling. Hydrobiologia 142:271–279CrossRefGoogle Scholar
  51. Coull BC (1990) Are members of the meiofauna food for higher trophic levels? Trans Am Microsc Soc 109:233–246CrossRefGoogle Scholar
  52. Coull BC (1999) Role of meiofauna in estuarine soft-bottom habitats. Aust J Ecol 24:327–343CrossRefGoogle Scholar
  53. Coull BC, Chandler GT (1992) Pollution and meiofauna: field, laboratory, and mesocosm studies. Oceanogr Mar Biol Annu Rev 30:191–271Google Scholar
  54. Creer S, Deiner K, Frey S, Porazinska D, Taberlet P, Thomas WK, Potter C, Bik HM (2016) The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol Evol 7:1008–1018CrossRefGoogle Scholar
  55. Cullen DJ (1973) Bioturbation of superficial marine sediments by interstitial meiobenthos. Nature 242:323–324CrossRefGoogle Scholar
  56. D’Hondt A-S, Stock W, Blommaert L, Moens T, Sabbe K (2018) Nematodes stimulate biomass accumulation in a multispecies diatom biofilm. Mar Environ Res. Scholar
  57. Dahms H-U, Qian P-Y (2006) Kin recognition during intraspecific predation by Harpacticus sp. (Copepoda: Harpacticoida). Zool Stud 45:395–403Google Scholar
  58. Dahms H-U, Harder T, Qian P-Y (2007) Selective attraction and reproductive performance of a harpacticoid copepod in a response to biofilms. J Exp Mar Biol Ecol 341:228–238CrossRefGoogle Scholar
  59. Danovaro R, Scopa M, Gambi C, Fraschetti S (2007) Trophic importance of subtidal metazoan meiofauna: evidence from in situ exclusion experiments on soft and rocky substrates. Mar Biol 152:339–350CrossRefGoogle Scholar
  60. Dashfield SL, Somerfield PJ, Widdicombe S, Austen MC, Nimmo M (2008) Impacts of ocean acidification and burrowing urchins on within-sediment pH profiles and subtidal nematode communities. J Exp Mar Biol Ecol 365:46–52CrossRefGoogle Scholar
  61. de Jonge VN, Bouwman LA (1977) A simple density separation technique for quantitative isolation of meiobenthos using the colloidal silica Ludox-TM. Mar Biol 42:143–148CrossRefGoogle Scholar
  62. De Ley P, Mundo-Ocampo M (2004) The cultivation of nematodes. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology: advances and perspectives, vol 1. Tsinghua University Press, Tsinghua, China, pp 541–619Google Scholar
  63. De Meester N (2016) Unravelling coexistence of cryptic Litoditis marina species. PhD thesis, Ghent University, Belgium, 322 pGoogle Scholar
  64. De Meester L, Gomez A, Okamura B, Schwenk K (2002) The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecol Intern J Ecol 23:121–135CrossRefGoogle Scholar
  65. De Meester N, Derycke S, Bonte D, Moens T (2011) Salinity effects on the coexistence of cryptic species: a case study on marine nematodes. Mar Biol 158:2717–2726CrossRefGoogle Scholar
  66. De Meester N, Derycke S, Rigaux A, Moens T (2015a) Active dispersal is differentially affected by inter- and intraspecific competition in closely related nematode species. Oikos 124:561–570CrossRefGoogle Scholar
  67. De Meester N, Dos Santos GAP, Rigaux A, Valdez Y, Derycke S, Moens T (2015b) Daily temperature fluctuations alter interactions between closely related species of marine nematodes. PLoS One 10:e0131625PubMedPubMedCentralCrossRefGoogle Scholar
  68. De Meester N, Gingold R, Rigaux A, Derycke S, Moens T (2016) Cryptic diversity and ecosystem functioning: a complex tale of differential effects on decomposition. Oecologia 182:559–571PubMedCrossRefPubMedCentralGoogle Scholar
  69. De Mesel I, Derycke S, Swings J, Vincx M, Moens T (2003) Influence of bacterivorous nematodes on the decomposition of cordgrass. J Exp Mar Biol Ecol 296:227–242CrossRefGoogle Scholar
  70. De Mesel I, Derycke S, Moens T, Van der Gucht K, Vincx M, Swings J (2004) Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environ Microbiol 6:733–744PubMedCrossRefPubMedCentralGoogle Scholar
  71. De Mesel I, Derycke S, Swings J, Vincx M, Moens T (2006) Role of nematodes in decomposition processes: does within-trophic group diversity matter? Mar Ecol Prog Ser 321:157–166CrossRefGoogle Scholar
  72. De Troch M, Fiers F, Vincx M (2003) Niche segregation and habitat specialisation of harpacticoid copepods in a tropical seagrass bed. Mar Biol 142:345–355CrossRefGoogle Scholar
  73. De Troch M, Steinarsdóttir MB, Chepurnov V, Ólafsson E (2005) Grazing on diatoms by harpacticoid copepods: species-specific density-dependent uptake and microbial gardening. Aquat Microb Ecol 39:135–144CrossRefGoogle Scholar
  74. De Troch M, Chepurnov V, Gheerardyn H, Vanreusel A, Olafsson E (2006) Is diatom size selection by harpacticoid copepods related to grazer body size? J Exp Mar Biol Ecol 332:1–11CrossRefGoogle Scholar
  75. De Troch M, Cnudde C, Vyverman W, Vanreusel A (2009) Increased production of faecal pellets by the benthic harpacticoid Paramphiascella fulvofasciata: importance of the food source. Mar Biol 156:469–477CrossRefGoogle Scholar
  76. De Troch M, Cnudde C, Willems A, Moens T, Vanreusel A (2010) Bacterial colonization on faecal pellets of harpacticoid copepods and on their diatom food. Microb Ecol 60:581–591PubMedCrossRefPubMedCentralGoogle Scholar
  77. De Troch M, Vergaerde I, Cnudde C, Vanormelingen P, Vincx M (2012) The taste of diatoms: the role of diatom growth phase characteristics and associated bacteria for grazing by the harpacticoid copepod Microarthridion littorale. Aquat Microb Ecol 67:47–58CrossRefGoogle Scholar
  78. Decho AW, Fleeger JW (1988) Microscale dispersion of meiobenthic copepods in response to food-resource patchiness. J Exp Mar Biol Ecol 118:229–243CrossRefGoogle Scholar
  79. DePatra KD, Levin LA (1989) Evidence of the passive deposition of meiofauna into fiddler crab burrows. J Exp Mar Biol Ecol 125:173–192CrossRefGoogle Scholar
  80. Derycke S, De Meester N, Rigaux A, Creer S, Bik H, Thomas WK, Moens T (2016) Coexisting species of the Litoditis marina complex (Nematoda) show differential resource use and have distinct microbiomes with high intraspecific variability. Mol Ecol 25:2093–2110PubMedCrossRefPubMedCentralGoogle Scholar
  81. Dos Santos GAP (2009) Top-down and bottom-up controls on populations and assemblages of marine nematodes, and their effects on benthic ecosystem functioning: an experimental approach. PhD thesis, Ghent University, Belgium, 252 pGoogle Scholar
  82. Dos Santos GAP, Moens T (2011) Populations of two prey nematodes and their interaction are controlled by a predatory nematode. Mar Ecol Prog Ser 427:117–131CrossRefGoogle Scholar
  83. Dos Santos GAP, Derycke S, Fonsêca-Genevois VG, Coelho L, Correia MTS, Moens T (2009) Interactions among bacterial-feeding nematode species at different levels of food availability. Mar Biol 156:629–640CrossRefGoogle Scholar
  84. Du Y, Xu K, Lei Y (2009) Simultaneous enumeration of diatom, protozoa and meiobenthos from marine sediments using Ludox-QPS method. Chin J Oceanol Limnol 27:775–783CrossRefGoogle Scholar
  85. Dupuy C, Rossignol L, Geslin E, Pascal P-Y (2010) Predation of mudflat meio-macrofaunal metazoans by a calcareous foraminifer, Ammonia tepida (Cushman, 1926). J Foraminifer Res 40:305–312CrossRefGoogle Scholar
  86. Dye A (1983) Oxygen consumption by sediments in a southern African mangrove swamp. Estuar Coast Shelf Sci 17:473–478CrossRefGoogle Scholar
  87. Eskin RA, Coull BC (1987) Seasonal and three-year variability of meiobenthic nematode populations at two estuarine sites. Mar Ecol Prog Ser 41:295–303CrossRefGoogle Scholar
  88. Evrard V, Huettel M, Cook PLM, Soetaert K, Heip CHR, Middelburg JJ (2012) Importance of phytodetritus and microphytobenthos for heterotrophs in a shallow subtidal sandy sediment. Mar Ecol Prog Ser 455:13–31CrossRefGoogle Scholar
  89. Fan Q-H, France S, Green O, Gunawardana D, Ho W, Kumarasinghe L, et al (2016) Guide to delivering phytosanitary diagnostic services. International Plant Protection Convention, FAOGoogle Scholar
  90. Fenchel T, Riedl RJ (1970) The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar Biol 7:255–268CrossRefGoogle Scholar
  91. Ferris H, Venette RC, van der Meulen HR, Lau SS (1998) Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant Soil 203:159–171CrossRefGoogle Scholar
  92. Findlay SEG (1981) Small-scale spatial distribution of meiofauna on a mud- and sandflat. Estuar Coast Shelf Sci 12:471–484CrossRefGoogle Scholar
  93. Findlay SEG (1982) Influence of sampling scale on apparent distribution of meiofauna on a sandflat. Estuaries 5:322–324CrossRefGoogle Scholar
  94. Findlay S, Tenore KR (1982) Effect of a free-living marine nematode (Diplolaimella chitwoodi) on detrital carbon mineralization. Mar Ecol Prog Ser 8:161–166CrossRefGoogle Scholar
  95. Folk RL, Andrews PB, Lewis DW (1970) Detrital sedimentary rock classification and nomenclature for use in New Zealand. NZ J Geol Geophys 13:937–968CrossRefGoogle Scholar
  96. Fonseca G, Gallucci F (2008) Direct evidence of predation in deep-sea nematodes: the case of Pontonema sp. Cah Biol Mar 49:295–297Google Scholar
  97. Fonseca G, Muthumbi A, Vanreusel A (2007) Species richness of the genus Molgolaimus (Nematoda) from local to ocean scale along continental slopes. Mar Ecol 28:446–459CrossRefGoogle Scholar
  98. Fonseca VG, Sinniger F, Gaspar JM, Quince C, Creer S, Power DM, Peck LS, Clark MS (2017) Revealing higher than expected diversity in Antarctic sediments: a metabarcoding approach. Sci Rep 7:6094PubMedPubMedCentralCrossRefGoogle Scholar
  99. Franco MA, Soetaert K, Costa MJ, Vincx M, Vanaverbeke J (2008) Uptake of phytodetritus by meiobenthos using C-13 labelled diatoms and Phaeocystis in two contrasting sediments from the North Sea. J Exp Mar Biol Ecol 362:1–8CrossRefGoogle Scholar
  100. Frangoulis C, Christou ED, Hecq JH (2005) Comparison of marine copepod outfluxes: nature, rate, fate and role in the carbon and nitrogen cycles. Adv Mar Biol 47:253–309PubMedCrossRefPubMedCentralGoogle Scholar
  101. Frost R (1923) Stopping by woods on a snowy evening. In: Lathem EC (ed) The poetry of Robert Frost. Henry Holt, New YorkGoogle Scholar
  102. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP et al (2004) Nitrogen cycles: past, presence, and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  103. Gallucci F, Steyaert M, Moens T (2005) Can field distributions of marine predacious nematodes be explained by sediment constraints on their foraging success? Mar Ecol Prog Ser 304:167–178CrossRefGoogle Scholar
  104. Gallucci F, Moens T, Vanreusel A, Fonseca G (2008) Active colonization of disturbed sediments by deep-sea nematodes: evidence for the patch mosaic model. Mar Ecol Prog Ser 367:173–183CrossRefGoogle Scholar
  105. Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G et al (2010) Aerobic denitrification in permeable Wadden Sea sediments. ISME J 4:417–426PubMedCrossRefPubMedCentralGoogle Scholar
  106. Gao H, Matyka M, Liu B, Khalili A, Kostka JE, Collins G et al (2012) Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea. Limnol Oceanogr 57:185–198CrossRefGoogle Scholar
  107. Garraffoni ARS, Alcantara FC, Checon HH (2017) Evaluating the anesthetization and fixation efficacy of “soft” and “hard” freshwater benthic meiofauna: what is the best method for specimen reservation? Limnology 18:209–218CrossRefGoogle Scholar
  108. Gaudes A, Muñoz I, Moens T (2013) Bottom-up effects on freshwater bacterivorous nematode populations: a microcosm approach. Hydrobiologia 707:159–172CrossRefGoogle Scholar
  109. Gee JM (1989) An ecological and economic review of meiofauna as food for fish. Zool J Linnean Soc 96:243–261CrossRefGoogle Scholar
  110. Gerlach SA (1978) Food-chain relationships in subtidal silty sand marine sediments and role of meiofauna in stimulating bacterial productivity. Oecologia 33:55–69PubMedCrossRefPubMedCentralGoogle Scholar
  111. Gheskiere T, Hoste E, Vanaverbeke J, Vincx M, Degraer S (2004) Horizontal zonation patterns and feeding structure of marine nematode assemblages on a macrotidal, ultra-dissipative sandy beach (De Panne, Belgium). J Sea Res 52:221–226CrossRefGoogle Scholar
  112. Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments, 2nd edn. Springer, Berlin, 527 pGoogle Scholar
  113. Gingold R, Mundo-Ocampo M, Holovachov O, Rocha-Olivares A (2010) The role of habitat heterogeneity in structuring the community of intertidal free-living marine nematodes. Mar Biol 157:1741–1753PubMedPubMedCentralCrossRefGoogle Scholar
  114. Gingold R, Moens T, Rocha Olivares A (2013) Assessing the response of nematode communities to climate change driven warming: a microcosm experiment. PLoS One 8:e66653PubMedPubMedCentralCrossRefGoogle Scholar
  115. Gourbault N, Warwick RM, Hellequet M-N (1998) Spatial and temporal variability in the composition and structure of meiobenthic assemblages (especially nematodes) in tropical beaches (Guadeloupe, FWI). Cah Biol Mar 39:29–39Google Scholar
  116. Graf G (1989) Benthic pelagic coupling in a deep-sea benthic community. Nature 341:437–439CrossRefGoogle Scholar
  117. Gray JS (1981) The ecology of marine sediments. An introduction to the structure and function of benthic communities. Cambridge studies in modern biology, vol 2. Cambridge University Press, Cambridge, 185 pGoogle Scholar
  118. Gray NF (1984) Ecology of nematophagous fungi: comparison of the soil sprinkling method with the Baermann funnel technique in the isolation of endoparasites. Soil Biol Biochem 16:81–83CrossRefGoogle Scholar
  119. Grego M, Stachowitsch M, De Troch M, Riede B (2013) CellTracker Green labelling vs. rose bengal staining: CTG wins by points in distinguishing living from dead anoxia-impacted copepods and nematodes. Biogeosciences 10:4565–4575CrossRefGoogle Scholar
  120. Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347CrossRefGoogle Scholar
  121. Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296PubMedCrossRefPubMedCentralGoogle Scholar
  122. Guarini JM, Blanchard GF, Gros P, Harrison SJ (1997) Modelling the mud surface temperature on intertidal flats to investigate the spatio-temporal dynamics of the benthic microalgal photosynthetic capacity. Mar Ecol Prog Ser 153:25–36CrossRefGoogle Scholar
  123. Guarini JM, Blanchard GF, Bacher C, Gros P, Riera P, Richard P et al (1998) Dynamics of spatial patterns of microphytobenthic biomass: inferences from a geostatistical analysis of two comprehensive surveys in Marennes-Oléron Bay (France). Mar Ecol Prog Ser 166:131–141CrossRefGoogle Scholar
  124. Guisande C, Maneiro I, Riveiro I, Barreiro A, Pazos Y (2002) Estimation of copepod trophic niche in the field using amino acids and marker pigments. Mar Ecol Prog Ser 239:147–156CrossRefGoogle Scholar
  125. Hamels I, Moens T, Muylaert K, Vyverman W (2001) Trophic interactions between ciliates and nematodes from an intertidal flat. Aquat Microb Ecol 26:61–72CrossRefGoogle Scholar
  126. Harris RP (1972a) The distribution and ecology of the interstitial meiofauna of a sandy beach at Whitsand Bay, East Cornwall. J Mar Biol Assoc UK 52:1–18CrossRefGoogle Scholar
  127. Harris RP (1972b) Seasonal changes in population density and vertical distribution of harpacticoid copepods on an intertidal sand beach. J Mar Biol Assoc UK 52:493–505CrossRefGoogle Scholar
  128. Hedqvist-Johnson K, Andre C (1991) The impact of the brown shrimp Crangon crangon L on soft-bottom meiofauna – An experimental approach. Ophelia 34:41–49CrossRefGoogle Scholar
  129. Heiner I, Neuhaus B (2007) Loricifera from the deep sea at the Galapagos Spreading Center, with a description of Spinoloricus turbatio gen. et sp. nov. (Nanaloricidae). Helgol Mar Res 61:167–182CrossRefGoogle Scholar
  130. Heip C, Smol N, Hautekiet W (1974) Rapid method of extracting meiobenthic nematodes and copepods from mud and detritus. Mar Biol 28:79–81CrossRefGoogle Scholar
  131. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Annu Rev 23:399–489Google Scholar
  132. Herbert RA (1999) Nitrogen cycling in coastal marine sediments. FEMS Microbiol Rev 23:563–590PubMedCrossRefPubMedCentralGoogle Scholar
  133. Herman PMJ, Middelburg JJ, Heip CHR (2001) Benthic community structure and sediment processes on an intertidal flat: results from ECOFLAT project. Cont Shelf Res 21:2055–2071CrossRefGoogle Scholar
  134. Hicks GRF, Coull BC (1983) The ecology of marine meiobenthic harpacticoid copepods. Oceanogr Mar Biol 21:67–175Google Scholar
  135. Higgins RP, Thiel H (1988) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, DCGoogle Scholar
  136. Hubas C, Sachidhanandam C, Rybarczyk H, Lubarsky HV, Rigaux A, Moens T, Paterson DM (2010) Bacterivorous nematodes stimulate microbial growth and exopolymer production in marine sediment microcosms. Mar Ecol Prog Ser 419:85–94CrossRefGoogle Scholar
  137. Hulings NC, Gray JS (1971) A manual for the study of meiofauna. Smithsonian contributions to zoology, vol 78. Smithsonian Institution Press, Washington, DCGoogle Scholar
  138. Ingels J, dos Santos G, Hicks A, Valdes Vazquez Y, Neres PF, Pontes LP et al (2018) Short-term CO2 exposure and temperature rise effects on metazoan meiofauna and free-living nematodes in sandy and muddy sediments: results from a flume experiment. J Exp Mar Biol Ecol 502:211–226CrossRefGoogle Scholar
  139. Jacobsen TR, Azam F (1984) Role of bacteria in copepod fecal pellet decomposition: colonization, growth rates and mineralization. Bull Mar Sci 35:495–502Google Scholar
  140. Jansson BO (1968) Quantitative and experimental studies of the interstitial fauna in four Swedish sandy beaches. Ophelia 5:1–71CrossRefGoogle Scholar
  141. Jensen P (1982) Diatom-feeding behaviour of the free-living marine nematode Chromadorita tenuis. Nematologica 28:71–76CrossRefGoogle Scholar
  142. Jensen P (1986) Nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico. IV. Ecological aspects. Mar Biol 92:489–503CrossRefGoogle Scholar
  143. Joint IR, Gee JM, Warwick RM (1982) Determination of fine-scale vertical distribution of microbes and meiofauna in an intertidal sediment. Mar Biol 72:157–164CrossRefGoogle Scholar
  144. Juario JV (1975) Nematode species composition and seasonal fluctuation of a sublittoral meiofauna community in the German Bight. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven 15:283–337Google Scholar
  145. Kaiser MJ, Attrill MJ, Jennings S, Thomas DN, Barnes DKA (2011) Marine ecology: processes, systems, and impacts, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  146. Karlson AML, Viitasalo-Frösen S (2009) Assimilation of C-14-labelled zooplankton benthic eggs by macrobenthos. J Plankton Res 31:459–463CrossRefGoogle Scholar
  147. Kendall MA, Davey JT, Widdicombe S (1995) The response of two estuarine benthic communities to the quantity and quality of food. Hydrobiologia 311:207–214CrossRefGoogle Scholar
  148. Kennedy AD (1994) Predation within meiofaunal communities – Description and results of a rapid-freezing method of investigation. Mar Ecol Prog Ser 114:71–79CrossRefGoogle Scholar
  149. Kjellin J, Hallin S, Wörman A (2007) Spatial variations in denitrification activity in wetland sediments explained by hydrology and denitrifying community structure. Water Res 41:4710–4720PubMedCrossRefPubMedCentralGoogle Scholar
  150. Kristensen E, Kostka JE (2005) Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions. In: Kristensen E, Haese RR, Kostka JE (eds) Interactions between macro- and microorganisms in marine sediments. Coastal and estuarine studies, vol 60. American Geophysical Union, New York, pp 125–157CrossRefGoogle Scholar
  151. Kuipers BR, de Wilde PAWJ, Creutzberg F (1981) Energy flow in a tidal flat ecosystem. Mar Ecol Prog Ser 5:215–221CrossRefGoogle Scholar
  152. Lampadariou N, Ingels J, Schratzberger M, Thistle D (2018) “Meiofauna research approaching 2020: knowledge gaps and new avenues”, an introduction to the special meiofauna issue resulting from IςIMCo, the 16th International Meiofauna Conference. J Exp Mar Biol Ecol 502:1–3CrossRefGoogle Scholar
  153. Leach AM, Galloway J, Bleeker A, Kitzes J (2012) A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ Dev 1:40–66CrossRefGoogle Scholar
  154. Leduc D, Probert PK (2009) The effect of bacterivorous nematodes on detritus incorporation by macrofaunal detritivores: a study using stable isotope and fatty acid analyses. J Exp Mar Biol Ecol 371:130–139CrossRefGoogle Scholar
  155. Leduc D, Probert P, Nodder S (2010) Influence of mesh size and core penetration on estimates of deep-sea nematode abundance, biomass, and diversity. Deep Sea Res I 57:1354–1362CrossRefGoogle Scholar
  156. Lee JJ, Tietjen JH, Mastropaolo C, Rubin H (1977) Food quality and the heterogeneous spatial distribution of meiofauna. Helgoländer Meeresun 30:272–282CrossRefGoogle Scholar
  157. Lehman PS, Reid JW (1992) Phyllognathopus viguieri (Crustacea: Harpacticoida), a predaceous copepod of phytoparasitic, entomopathogenic, and free-living nematodes. Proc Soil Crop Sci Soc FL 52:78–82Google Scholar
  158. Levin L, Blair N, DeMaster D, Plaia G, Fornes W, Martin C, Thomas C (1997) Rapid subduction of organic matter by maldanid polychaetes on the North Carolina slope. J Mar Res 55:595–611CrossRefGoogle Scholar
  159. Li J, Vincx M, Herman PMJ (1996) A model of nematode dynamics in the Westerschelde estuary. Ecol Model 90:271–284CrossRefGoogle Scholar
  160. Liu X-S, Xu W-Z, Cheung SG, Shin PK (2008) Subtropical meiobenthic nematode communities in Victoria Harbour, Hong Kong. Mar Pollut Bull 56:1491–1497PubMedCrossRefPubMedCentralGoogle Scholar
  161. Löhr SC, Kennedy MJ (2015) Micro-trace fossils reveal pervasive reworking of Pliocene sapropels by low-oxygen-adapted benthic meiofauna. Nat Commun:6.
  162. Lucas CH, Widdows J, Brinsley MD, Salkeld PN, Herman PMJ (2000) Benthic-pelagic exchange of microalgae at a tidal flat. 1. Pigment analysis. Mar Ecol Prog Ser 196:59–73CrossRefGoogle Scholar
  163. Maghsoud H, Weiss A, Smith JPS, Litvaitis MK, Fegley SR (2014) Diagnostic PCR can be used to illuminate meiofaunal diets and trophic relationships. Invertebr Biol 133:121–127PubMedPubMedCentralCrossRefGoogle Scholar
  164. Mangubhai S, Greenwood JG (2004) A simple practical method for bulk and rapid extraction of free-living nematodes from marine and estuarine sediments. Hydrobiologia 522:343–347CrossRefGoogle Scholar
  165. Marchant HK, Lavik G, Holtappels M, Kuypers MMM (2014) The fate of nitrate in intertidal permeable sediments. PLoS One 9:e104517PubMedPubMedCentralCrossRefGoogle Scholar
  166. Maria TF, De Troch M, Vanaverbeke J, Esteves AM, Vanreusel A (2011) Use of benthic vs planktonic organic matter by sandy-beach organisms: a food tracing experiment with C-13 labelled diatoms. J Exp Mar Biol Ecol 407:309–314CrossRefGoogle Scholar
  167. Maria TF, Vanaverbeke J, Esteves AM, De Troch M, Vanreusel A (2012) The importance of biological interactions for the vertical distribution of nematodes in a temperate ultra-dissipative sandy beach. Estuar Coast Shelf Sci 97:114–126CrossRefGoogle Scholar
  168. Maria TF, Paiva P, Vanreusel A, Esteves AM (2013a) The relationship between sandy beach nematodes and environmental characteristics in two Brazilian sandy beaches (Guanabara Bay, Rio de Janeiro). An Acad Bras Cienc 85:257–270PubMedCrossRefPubMedCentralGoogle Scholar
  169. Maria TF, Vanaverbeke J, Gingold R, Esteves AM, Vanreusel A (2013b) Tidal exposure or microhabitats: what determines sandy-beach nematode zonation? A case study of a macrotidal ridge-and-runnel sandy beach in Belgium. Mar Ecol 34:207–217CrossRefGoogle Scholar
  170. Maria TF, Silva MG, Souza TP, Vanaverbeke J, Vanreusel A, Esteves AM (2018) Is the vertical distribution of meiofauna similar in two contrasting microhabitats? A case study of a macrotidal sandy beach. J Exp Mar Biol Ecol 502:39–51CrossRefGoogle Scholar
  171. Martens PM, Schockaert ER (1986) The importance of turbellarians in the marine meiobenthos – A review. Hydrobiologia 132:295–303CrossRefGoogle Scholar
  172. Materatski P, Moens T, Vafeiadou A-M, Ribeiro R, Adão H (2015) A comparative analysis of benthic nematode assemblages before habitat loss and during the early recovery of Zostera noltii seagrass beds. Estuar Coast Shelf Sci 167:256–268CrossRefGoogle Scholar
  173. McIntyre A, Murison D (1973) The meiofauna of a flatfish nursery ground. J Mar Biol Assoc U K 53:93–118CrossRefGoogle Scholar
  174. McLachlan A, Erasmus T, Furstenberg JP (1977) Migration of sandy beach meiofauna. Afr Zool 12:257–277CrossRefGoogle Scholar
  175. Meadows AS, Ingels J, Widdicombe S, Hale R, Rundle SD (2015) Effects of elevated CO2 and temperature on an intertidal meiobenthic community. J Exp Mar Biol Ecol 469:44–56CrossRefGoogle Scholar
  176. Mermillod-Blondin F, Rosenberg R, Francois-Carcaillet F, Norling K, Mauclaire L (2004) Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquat Microb Ecol 36:271–284CrossRefGoogle Scholar
  177. Meysman FJR, Middelburg JJ, Heip CHR (2006) Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol Evol 21:688–695PubMedCrossRefPubMedCentralGoogle Scholar
  178. Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip CHR (2000) The fate of intertidal microphytobenthos carbon: an in situ 13C labelling study. Limnol Oceanogr 45:1224–1234CrossRefGoogle Scholar
  179. Moens T, Vincx M (1997) Observations on the feeding ecology of estuarine nematodes. J Mar Biol Assoc U K 77:211–227CrossRefGoogle Scholar
  180. Moens T, Van Gansbeke D, Vincx M (1999a) Linking estuarine nematodes to their suspected food. A case study from the Westerschelde Estuary (south-west Netherlands). J Mar Biol Assoc UK 79:1017–1027CrossRefGoogle Scholar
  181. Moens T, Verbeeck L, de Maeyer A, Swings J, Vincx M (1999b) Selective attraction of marine bacterivorous nematodes to their bacterial food. Mar Ecol Prog Ser 176:165–178CrossRefGoogle Scholar
  182. Moens T, Verbeeck L, Vincx M (1999c) Feeding biology of a predatory and a facultatively predatory nematode (Enoploides longispiculosus and Adoncholaimus fuscus). Mar Biol 134:585–593CrossRefGoogle Scholar
  183. Moens T, Herman PMJ, Verbeeck L, Steyaert M, Vincx M (2000) Predation rates and prey selectivity in two predacious estuarine nematodes. Mar Ecol Prog Ser 205:185–193CrossRefGoogle Scholar
  184. Moens T, Luyten C, Middelburg JJ, Herman PMJ, Vincx M (2002) Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes. Mar Ecol Prog Ser 234:127–137CrossRefGoogle Scholar
  185. Moens T, Yeates GW, De Ley P (2004) Use of carbon and energy sources by nematodes. Nematol Monogr Perspect 2:529–545Google Scholar
  186. Moens T, Bouillon S, Gallucci F (2005a) Dual stable isotope abundances unravel trophic position of estuarine nematodes. J Mar Biol Assoc UK 85:1401–1407CrossRefGoogle Scholar
  187. Moens T, Dos Santos GAP, Thompson F, Swings J, Fonsêca-Genevois V, Vincx M et al (2005b) Do nematode mucus secretions affect bacterial growth? Aquat Microb Ecol 40:77–83CrossRefGoogle Scholar
  188. Moens T, Bergtold M, Traunspurger W (2006) Chapter 6. Feeding ecology of free-living benthic nematodes. In: Eyualem A, Andrássy I, Traunspurger W (eds) Freshwater nematodes: ecology and taxonomy. CAB International Publishing, Cambridge, pp 105–131CrossRefGoogle Scholar
  189. Moens T, Moodley L, Steyaert M, Van Colen C, Van Oevelen D, Boschker HT S, et al (2011) The structure and functional roles of tidal flat meiobenthos. In: Heip C, Laane R (eds) Aspects of coastal research in contribution to LOICZ in The Netherlands and Flanders (2002-2010). LOICZ Research and Studies, vol 38, pp 171–184Google Scholar
  190. Moens T, Braeckman U, Derycke S, Fonseca G, Gallucci F, Gingold R, Guilini K, Ingels J, Leduc D, Vanaverbeke J, Van Colen C, Vanreusel A, Vincx M (2013) Ecology of free-living marine nematodes. In: Schmidt-Rhaesa A (ed) Handbook of zoology. Gastrotricha, cycloneuralia and gnathifera, vol 2. Nematoda. De Gruyter, Berlin, pp 109–152Google Scholar
  191. Moens T, Vafeiadou AM, De Geyter E, Vanormelingen P, Sabbe K, De Troch M (2014) Diatom feeding across trophic guilds in tidal flat nematodes, and the importance of diatom cell size. J Sea Res 92:125–133CrossRefGoogle Scholar
  192. Møller EF, Borg CMA, Jónasdóttir SH, Satapoomin S, Jaspers C, Nielsen TG (2011) Production and fate of copepod fecal pellets across the Southern Indian Ocean. Mar Biol 158:677–688CrossRefGoogle Scholar
  193. Montagna PA (1995) Rates of metazoan meiofaunal microbivory: a review. Vie et Milieu 45:1–9Google Scholar
  194. Montagna PA, Yoon WB (1991) The effect of freshwater inflow on meiofaunal consumption of sediment bacteria and microphytobenthos in San Antonio Bay, Texas, U.S.A. Estuar Coast Shelf Sci 33:529–547CrossRefGoogle Scholar
  195. Montagna PA, Coull BC, Herring TL, Dudley BW (1983) The relationship between abundances of meiofauna and their suspected microbial food (diatoms and bacteria). Estuar Coast Shelf Sci 17:381–394CrossRefGoogle Scholar
  196. Montagna PA, Baguley JG, Hsiang C-Y, Reuscher MG (2017) Comparison of sampling methods for deep-sea infauna. Limnol Oceanogr Methods 15:166–183CrossRefGoogle Scholar
  197. Montagnes DJS, Lynn DH (1993) A quantitative protargol stain (QPS) for ciliates and other protists. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton, FL, pp 229–240Google Scholar
  198. Moreno M, Ferrero TJ, Gallizia I, Vezzulli L, Albertelli G, Fabiano M (2008a) An assessment of the spatial heterogeneity of environmental disturbance within an enclosed harbour through the analysis of meiofauna and nematode assemblages. Estuar Coast Shelf Sci 77:565–576CrossRefGoogle Scholar
  199. Moreno M, Vezzulli L, Marin V, Laconi P, Albertelli G, Fabiano M (2008b) The use of meiofauna diversity as an indicator of pollution in harbours. J Mar Sci 65:1428–1435Google Scholar
  200. Mostajir B, Amblard C, Buffan-Dubau E, De Wit R, Lensi R, Simé-Ngando T (2011) Chapter 13. Microbial food webs in aquatic and terrestrial ecosystems. In: Bertrand J-C, Caumette P, Lebaron P, Matheron R, Normand P, Simé-Ngando T (eds) Environmental microbiology: fundamentals and applications. Springer, pp 485–509Google Scholar
  201. Murphy RJ, Tolhurst TJ, Chapman MG, Underwood AJ (2008) Spatial variation of chlorophyll on estuarine mudflats determined by field-based remote sensing. Mar Ecol Prog Ser 365:45–55CrossRefGoogle Scholar
  202. Murray JW, Bowser SS (2000) Mortality, protoplasm decay rate, and reliability of staining techniques to recognize ‘living’ foraminifera: a review. J Foraminifer Res 30:66–70CrossRefGoogle Scholar
  203. Musat N, Giere O, Gieseke A, Thiermann F, Amann R, Dubilier N (2007) Molecular and morphological characterization of the association between bacterial endosymbionts and the marine nematode Astomonema sp. from the Bahamas. Environ Microbiol 9:1345–1353PubMedCrossRefPubMedCentralGoogle Scholar
  204. Nascimento FJA, Naslund J, Elmgren R (2012) Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol Oceanogr 57:338–346CrossRefGoogle Scholar
  205. Näslund J, Nascimento FJ, Gunnarsson JS (2010) Meiofauna reduces bacterial mineralization of naphthalene in marine sediment. ISME J 4:1421–1430PubMedCrossRefPubMedCentralGoogle Scholar
  206. Nehring S (1991) Der Röhrenbau: eine neuentdeckte, erfolgreiche Lebensweise bei den Nematoden. Mikokosmos 80:134–138Google Scholar
  207. Nehring S, Jensen P, Lorenzen S (1990) Tube-dwelling nematodes: tube construction and possible ecological effects on sediment-water interfaces. Mar Ecol Prog Ser 64:123–128CrossRefGoogle Scholar
  208. Nicholas WL (2001) Seasonal variations in nematode assemblages on an Australian temperate ocean beach: the effect of heavy seas and unusually high tides. Hydrobiologia 464:17–26CrossRefGoogle Scholar
  209. Nicholas W, Hodda M (1999) The free-living nematodes of a temperate, high energy, sandy beach: faunal composition and variation over space and time. Hydrobiologia 394:113–127CrossRefGoogle Scholar
  210. Noodt W (1971) Ecology of the copepoda. In: Hulings NC (ed) Proceedings of the first international conference on Meiofauna, Tunis, 1969. Smithsonian contributions to zoology, vol 76, pp 97–102Google Scholar
  211. Ólafsson E, Elmgren R (1991) Effects of biological disturbance by benthic amphipods Monoporeia affinis on meiobenthic community structure: a laboratory approach. Mar Ecol Prog Ser 74:99–107CrossRefGoogle Scholar
  212. Ólafsson E, Elmgren R (1997) Seasonal dynamics of sublittoral meiobenthos in relation to seasonality in a coastal marine ecosystem. Oecologia 67:157–168Google Scholar
  213. Ólafsson E, Moore GC, Bett BJ (1990) The impact of Melinna palmata Grube, a tube-building polychaete, on meiofaunal community structure in a soft-bottom subtidal habitat. Estuar Coast Shelf Sci 31:883–893CrossRefGoogle Scholar
  214. Ólafsson E, Elmgren R, Papakosta O (1993) Effects of the deposit-feeding benthic bivalve Macoma balthica on meiobenthos. Oecologia 93:457–462PubMedCrossRefPubMedCentralGoogle Scholar
  215. Olesen M, Strake S, Andrushaitis A (2005) Egestion of non-pellet-bound fecal material from the copepod Acartia tonsa: implication for vertical flux and degradation. Mar Ecol Prog Ser 293:131–142CrossRefGoogle Scholar
  216. Ott JA, Schiemer F (1973) Respiration and anaerobiosis of free living nematodes from marine and limnic sediments. Neth J Sea Res 7:233–243CrossRefGoogle Scholar
  217. Pace MC, Carman KR (1996) Interspecific differences among meiobenthic copepods in the use of microalgal food resources. Mar Ecol Prog Ser 143:77–86CrossRefGoogle Scholar
  218. Paerl HW (2006) Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: interactive effects of human and climatic perturbations. Ecol Eng 26:40–54CrossRefGoogle Scholar
  219. Paranhos R, Mayr LM (1993) Seasonal patterns of temperature and salinity in Guanabara Bay, Brazil. Fresenius Environ Bull 2:647–652Google Scholar
  220. Pati AC, Belmonte G, Ceccherelli VU, Boero F (1999) The inactive temporary component: an unexplored fraction of meiobenthos. Mar Biol 134:419–427CrossRefGoogle Scholar
  221. Pfannkuche O, Thiel H (1988) Chapter 9. Sample processing. In: Higgins RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, DC, pp 134–145Google Scholar
  222. Pinckney J, Sandulli R (1990) Spatial autocorrelation analysis of meiofaunal and microalgal populations on an intertidal sandflat – Scale linkage between consumers and resources. Estuar Coast Shelf Sci 30:341–353CrossRefGoogle Scholar
  223. Pinckney JL, Carman KR, Lumsden SE, Hymel SN (2003) Microalgal-meiofaunal trophic relationships in muddy intertidal estuarine sediments. Aquat Microb Ecol 31:99–108CrossRefGoogle Scholar
  224. Polz MF, Ott JA, Bright M, Cavanaugh CM (2000) When bacteria hitch a ride. ASM News 66:531–539Google Scholar
  225. Porubsky WP, Weston NB, Joye SB (2009) Benthic metabolism and the fate of dissolved inorganic nitrogen in intertidal sediments. Estuar Coast Shelf Sci 83:392–402CrossRefGoogle Scholar
  226. Rabalais NN, Turner RE, Díaz RJ, Justic D (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66:1528–1537CrossRefGoogle Scholar
  227. Reise K (1981) High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea. Helgoländer Meeresun 34:413–425CrossRefGoogle Scholar
  228. Reise K (2002) Sediment mediated species interactions in coastal waters. J Sea Res 48:127–141CrossRefGoogle Scholar
  229. Reiss J, Schmid-Araya JM (2011) Feeding response of a benthic copepod to ciliate prey type, prey concentration and habitat complexity. Freshw Biol 56:1519–1530CrossRefGoogle Scholar
  230. Remane A (1934) Die Brackwasserfauna. Verhandlungen der Deutschen Zoologischen Gesellschaft, Greifswald, pp 34–74Google Scholar
  231. Renaud-Debyser J (1963) Recherches écologiques sur la faune interstitielle des sables. Bassin d’Arcachon, île de Bimini, Bahamas. Vie et Milieu, Suppl 15:1–157Google Scholar
  232. Riemann F, Helmke E (2002) Symbiotic relations of sediment-agglutinating nematodes and bacteria in detrital habitats: the enzyme-sharing concept. Mar Ecol 23:93–113CrossRefGoogle Scholar
  233. Riemann F, Schrage M (1978) The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture. Oecologia 34:75–88PubMedCrossRefPubMedCentralGoogle Scholar
  234. Rieper M (1982) Feeding preferences of marine harpacticoid copepods for various species of bacteria. Mar Ecol Prog Ser 7:303–307CrossRefGoogle Scholar
  235. Rieper M (1985) Some lower food web organisms in the nutrition of marine harpacticoid copepods: an experimental study. Helgoländer Meeresun 39:357–366CrossRefGoogle Scholar
  236. Riera R, Monterroso O, Rodríguez M, Ramos E, Sacramento A (2011) Six-year study of meiofaunal dynamics in fish farms in Tenerife (Canary Islands, NE Atlantic Ocean). Aquat Ecol 45:221–229CrossRefGoogle Scholar
  237. Rohal M, Thistle D, Easton Erin E (2018) Extraction of metazoan meiofauna from muddy deep-sea samples: operator and taxon effects on efficiency. J Exp Mar Biol Ecol 502:105–110CrossRefGoogle Scholar
  238. Rysgaard S, Christensen PB, Sørensen MV, Funch P, Berg P (2000) Marine meiofauna, carbon and nitrogen mineralization in sandy and soft sediments of Disko Bay, West Greenland. Aquat Microb Ecol 21:59–71CrossRefGoogle Scholar
  239. Rzeznik-Orignac J, Fichet D, Boucher G (2003) Spatio-temporal structure of the nematode assemblages of the Brouage mudflat (Marennes-Oleron, France). Estuar Coast Shelf Sci 58:77–88CrossRefGoogle Scholar
  240. Rzeznik-Orignac J, Fichet D, Boucher G (2004) Extracting massive numbers of nematodes from muddy marine deposits: efficiency and selectivity. Nematology 6:605–616CrossRefGoogle Scholar
  241. Rzeznik-Orignac J, Boucher G, Fichet D, Richard P (2008) Stable isotope analysis of food source and trophic position of intertidal nematodes and copepods. Mar Ecol Prog Ser 359:145–150CrossRefGoogle Scholar
  242. Sahraean N, Moens T (2018) Year-to-year variability in beach nematode assemblage structure and biodiversity along the northern coast of the Strait of Hormuz, Persian Gulf (submitted)Google Scholar
  243. Sahraean N, Campinas Bezerra T, Ejlali Khanaghah K, Mosallanejad H, Van Ranst E, Moens T (2017) Effects of pollution on nematode assemblage structure and diversity on beaches of the Northern Persian Gulf. Hydrobiologia 799:349–369CrossRefGoogle Scholar
  244. Sanchez-Moreno S, Ferris H, Guil N (2008) Role of tardigrades in the suppressive service of a soil food web. Agric Ecosyst Environ 124:187–192CrossRefGoogle Scholar
  245. Sandulli R, Pinckney J (1999) Patch sizes and spatial patterns of meiobenthic copepods and benthic microalgae in sandy sediments: a microscale approach. J Sea Res 41:179–187CrossRefGoogle Scholar
  246. Sarmento VC, Santos PJP, Hale R, Ingels J, Widdicombe S (2017) Effects of elevated CO2 and temperature on an intertidal harpacticoid copepod community. ICES J Mar Sci 74:1159–1169Google Scholar
  247. Schiemer F, Novak R, Ott J (1990) Metabolic studies on thiobiotic free-living nematodes and their symbiotic microorganisms. Mar Biol 106:129–137CrossRefGoogle Scholar
  248. Schratzberger M, Ingels J (2018) Meiofauna matters: the roles of meiofauna in benthic ecosystems. J Exp Mar Biol Ecol 502:12–25CrossRefGoogle Scholar
  249. Schratzberger M, Warwick RM (1999) Impact of predation and sediment disturbance by Carcinus maenas (L.) on free-living nematode community structure. J Exp Mar Biol Ecol 235:255–271CrossRefGoogle Scholar
  250. Schratzberger M, Gee JM, Rees HL, Boyd SE, Wall CM (2000) The structure and taxonomic composition of sublittoral meiofauna assemblages as an indicator of the status of marine environments. J Mar Biol Assoc UK 80:969–980CrossRefGoogle Scholar
  251. Schratzberger M, Lampadariou N, Somerfield PJ, Vandepitte L, Vanden Berghe E (2009) The impact of seabed disturbance on nematode communities: linking field and laboratory observations. Mar Biol 156:709–724CrossRefGoogle Scholar
  252. Schuelke T, Pereira TJ, Hardy SM, Bik HM (2018) Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Mol Ecol 27:1930–1951PubMedCrossRefPubMedCentralGoogle Scholar
  253. Schwinghamer P (1981) Extraction of living meiofauna from marine sediments by centrifugation in a silica sol-sorbitol mixture. Can J Fish Aquat Sci 38:476–478CrossRefGoogle Scholar
  254. Seifried S, Durbaum J (2000) First clear case of predation in marine Copepoda Harpacticoida. J Nat Hist 34:1595–1618CrossRefGoogle Scholar
  255. Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090PubMedCrossRefPubMedCentralGoogle Scholar
  256. Seuront L, Spilmont N (2002) Self-organized criticality in intertidal microphytobenthos patch patterns. Phys A Stat Mech Appl 313:513–539CrossRefGoogle Scholar
  257. Smith LD, Coull BC (1987) Juvenile spot (Pisces) and grass shrimp predation on meiobenthos in muddy and sandy substrata. J Exp Mar Biol Ecol 105:123–136CrossRefGoogle Scholar
  258. Smol N, Huys R, Vincx M (1991) A 4-years’ analysis of the meiofauna community of a dumping site for TiO2-waste off the Dutch coast. Chem Ecol 5:197–215CrossRefGoogle Scholar
  259. Soetaert K, Vincx M, Wittoeck J, Tulkens M, Van Gansbeke D (1994) Spatial patterns of Westerschelde meiobenthos. Estuar Coast Shelf Sci 39:367–388CrossRefGoogle Scholar
  260. Soetaert K, Vincx M, Wittoeck J, Tulkens M (1995) Meiobenthic distribution and nematode community structure in 5 European estuaries. Hydrobiologia 311:185–206CrossRefGoogle Scholar
  261. Soetaert K, Muthumbi AW, Heip C (2002) Size and shape of ocean margin nematodes: morphological diversity and depth-related patterns. Mar Ecol Prog Ser 242:195–204CrossRefGoogle Scholar
  262. Soetaert K, Franco M, Lampadariou N, Muthumbi A, Steyaert M, Vandepitte L, van den Berghe E, Vanaverbeke J (2009) Factors affecting nematode biomass, length and width from the shelf to the deep sea. Mar Ecol Prog Ser 392:123–132CrossRefGoogle Scholar
  263. Somerfield P, Warwick RM, Moens T (2005) Chapter 6. Meiofauna techniques. In: Eleftheriou A, McIntyre A (eds) Methods for the study of marine benthos, 3rd edn. Blackwell Science, Oxford, pp 229–272CrossRefGoogle Scholar
  264. Steyaert M, Herman PMJ, Moens T, Widdows J, Vincx M (2001) Tidal migration of nematodes on an estuarine tidal flat (The Molenplaat, Schelde Estuary, SW Netherlands). Mar Ecol Prog Ser 224:299–304CrossRefGoogle Scholar
  265. Steyaert M, Vanaverbeke J, Vanreusel A, Barranguet C, Lucas M, Vincx M (2003) The importance of fine-scale, vertical profiles in characterizing nematode community structure. Estuar Coast Shelf Sci 58:353–366CrossRefGoogle Scholar
  266. Stock W, Heylen K, Sabbe K, Willems A, De Troch M (2014) Interactions between benthic copepods, bacteria and diatoms promote nitrogen retention in intertidal marine sediments. PLoS One 9:e111001PubMedPubMedCentralCrossRefGoogle Scholar
  267. Sun B, Fleeger JW, Carney RS (1993) Sediment microtopography and the small-scale spatial distribution of meiofauna. J Exp Mar Biol Ecol 167:73–90CrossRefGoogle Scholar
  268. Svensson JR, Lindegarth M, Siccha M, Lenz M, Molis M, Wahl M, Pavia H (2010) Maximum species richness at intermediate frequencies of disturbance: consistency among levels of productivity. Ecology 88:830–838CrossRefGoogle Scholar
  269. Tchesunov AV, Ingels J, Popova EV (2012) Marine free-living nematodes associated with symbiotic bacteria in deep-sea canyons of north-east Atlantic Ocean. J Mar Biol Assoc UK 92:1257–1271CrossRefGoogle Scholar
  270. Thiel H, Thistle D, Wilson GD (1975) Ultrasonic treatment of sediment samples for more efficient sorting of meiofauna. Limnol Oceanogr 20:472–473CrossRefGoogle Scholar
  271. Thiermann F, Vismann B, Giere O (2000) Sulphide tolerance of the marine nematode Oncholaimus campylocercoides – A result of internal sulphur formation? Mar Ecol Prog Ser 193:251–259CrossRefGoogle Scholar
  272. Thistle D, Lambshead PJD, Sherman KM (1995) Nematode tail-shape groups respond to environmental differences in the deep sea. Vie et Milieu 45:107–115Google Scholar
  273. Thor P, Dam HG, Rogers DR (2003) Fate of organic carbon released from decomposing copepod fecal pellets in relation to bacterial production and ectoenzymatic activity. Aquat Microb Ecol 33:279–288CrossRefGoogle Scholar
  274. Tita G, Vincx M, Desrosiers G (1999) Size spectra, body width and morphotypes of intertidal nematodes: an ecological interpretation. J Mar Biol Assoc UK 79:1007–1015CrossRefGoogle Scholar
  275. Tita G, Desrosiers G, Vincx M, Nozais C (2000) Predation and sediment disturbance effects of the intertidal polychaete Nereis virens (Sars) on associated meiofaunal assemblages. J Exp Mar Biol Ecol 243:261–282CrossRefGoogle Scholar
  276. Turner JT (2002) Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Microb Ecol 27:57–102CrossRefGoogle Scholar
  277. Uhlig G, Thiel H, Gray JS (1973) Quantitative separation of meiofauna – Comparison of methods. Helgoländer Meeresun 25:173–195CrossRefGoogle Scholar
  278. Urban-Malinga B, Moens T (2006) Fate of organic matter in Arctic intertidal sediments: is utilisation by meiofauna important? J Sea Res 56:239–248CrossRefGoogle Scholar
  279. Vafeiadou A-M, Materatski P, Adão H, De Troch M, Moens T (2014) Resource utilization and trophic position of nematodes harpacticoid copepods in and adjacent to Zostera noltii beds. Biogeosciences 11:4001–4014CrossRefGoogle Scholar
  280. Vafeiadou A-M, Bretaña BL, Van Colen C, Wu X, Dos Santos GAP, Moens T (2018) Climate change-induced temperature effects to intertidal tropical and temperate meiobenthic communities (submitted)Google Scholar
  281. Van Colen C, Montserrat F, Verbist K, Vincx M, Steyaert M, Vanaverbeke J, Herman PMJ, Degraer S, Ysebaert T (2009) Tidal flat nematode responses to hypoxia and subsequent macrofauna-mediated alterations of sediment properties. Mar Ecol Prog Ser 381:189–197CrossRefGoogle Scholar
  282. Van den Berghe W, Bergmans M (1981) Differential food preferences in 3 co-occurring species of Tisbe (Copepoda, Harpacticoida). Mar Ecol Prog Ser 4:213–219CrossRefGoogle Scholar
  283. Van Gaever S, Moodley L, Pasotti F, Houtekamer M, Middelburg JJ, Danovaro R, Vanreusel A (2009) Trophic specialisation of metazoan meiofauna at the Håkon Mosby Mud Volcano: fatty acid biomarker isotope evidence. Mar Biol 156:1289–1296CrossRefGoogle Scholar
  284. Van Oevelen D, Middelburg JJ, Soetaert K, Moodley L (2006a) The fate of bacterial carbon in an intertidal sediment: modeling an in situ isotope tracer experiment. Limnol Oceanogr 51:1302–1314CrossRefGoogle Scholar
  285. Van Oevelen D, Moodley L, Soetaert K, Middelburg JJ (2006b) The trophic significance of bacterial carbon in a marine intertidal sediment: results of an in situ stable isotope labeling study. Limnol Oceanogr 51:2349–2359CrossRefGoogle Scholar
  286. Van Oevelen D, Soetaert K, Middelburg JJ, Herman PMJ, Moodley L, Hamels I, Moens T, Heip C (2006c) Quantifying intertidal food webs, using biomass, tracer and carbon isotope data. J Mar Res 64:453–482CrossRefGoogle Scholar
  287. Vanaverbeke J, Merckx B, Degraer S, Vincx M (2011) Sediment-related distribution patterns of nematodes and macrofauna: two sides of the benthic coin? Mar Environ Res 71:31–40PubMedCrossRefPubMedCentralGoogle Scholar
  288. Vanreusel A, De Groote A, Gollner S, Bright M (2010) Ecology and biogeography of free-living nematodes associated with chemosynthetic environments in the deep sea: a review. PLoS One 5:e12449PubMedPubMedCentralCrossRefGoogle Scholar
  289. Venekey V, Santos PJP, Fonsêca-Genevois VG (2014) The influence of tidal and rainfall cycles on intertidal nematodes: a case study in a tropical sandy beach. Braz J Oceanogr 62:247–256CrossRefGoogle Scholar
  290. Viglierchio DR, Schmitt RV (1983) On the methodology of nematode extraction from field samples – Baermann funnel modifications. J Nematol 15:438–444PubMedPubMedCentralGoogle Scholar
  291. Vincx M (1989) Free-living marine nematodes from the southern bight of the North Sea. Academiae Analecta, Klasse Wetenschappen 51:39–70Google Scholar
  292. Vincx M (1996) Meiofauna in marine and freshwater sediments. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. IUBS, UNESCO. CAB International, New York, pp 187–195Google Scholar
  293. Vopel K, Dehmlow J, Arlt G (1996) Vertical distribution of Cletocamptus confluens (Copepoda, Harpacticoida) in relation to oxygen and sulphide microprofiles of a brackish water sulphuretum. Mar Ecol Prog Ser 141:129–137CrossRefGoogle Scholar
  294. Vranken G, Herman PMJ, Vincx M, Heip C (1986) A re-evaluation of marine nematode productivity. Hydrobiologia 135:193–196CrossRefGoogle Scholar
  295. Walton WR (1952) Techniques for recognition of living foraminifera. Contr Cush Found Foram Res 3:56–60Google Scholar
  296. Warwick RM (1981) Survival strategies of meiofauna. In: Jones NV, Wolff WJ (eds) Feeding and survival strategies of estuarine organisms. Plenum Press, New York, pp 39–52CrossRefGoogle Scholar
  297. Warwick RM (1987) Meiofauna: their role in marine detrital systems. In: Moriarty DJW, Pullin RSV (eds) Detritus and microbial ecology in aquaculture, ICLARM Conference Proceedings, vol 14. International Center for Living Aquatic Resources Management, Manila, pp 282–295Google Scholar
  298. Warwick RM, Buchanan J (1971) The meiofauna off the coast of Northumberland. II. Seasonal stability of the nematode population. J Mar Biol Assoc UK 51:355–362CrossRefGoogle Scholar
  299. Warwick RM, Gee JM (1984) Community structure of estuarine meiobenthos. Mar Ecol Prog Ser 18:97–111CrossRefGoogle Scholar
  300. Warwick RM, Gee JM, Berge JA, Ambrose W (1986) Effects of the feeding activity of the polychaete Streblosoma bairdi (Malmgren) on meiofaunal abundance and community structure. Sarsia 71:11–16CrossRefGoogle Scholar
  301. Warwick RM, McEvoy AJ, Thrush SF (1997) The influence of Atrina zelandica Gray on meiobenthic nematode diversity and community structure. J Exp Mar Biol Ecol 214:231–247CrossRefGoogle Scholar
  302. Watzin MC (1983) The effects of meiofauna on settling macrofauna: meiofauna may structure macrofaunal communlties. Oecologia 59:163–166PubMedCrossRefPubMedCentralGoogle Scholar
  303. Watzin MC (1985) Interactions among temporary and permanent meiofauna: observations on the feeding and behaviour of selected taxa. Biol Bull Mar Biol Lab Woods Hole 169:397–416CrossRefGoogle Scholar
  304. Wetzel MA, Jensen P, Giere O (1995) Oxygen/sulfide rexime and nematode fauna associated with Arenicola marina burrows: new insights in the thiobios case. Mar Biol 124:301–312CrossRefGoogle Scholar
  305. Wetzel MA, Fleeger JW, Powers SP (2001) Effects of hypoxia and anoxia on meiofauna: a review with new data from the Gulf of Mexico. Coas Estuar Sci 58:165–184CrossRefGoogle Scholar
  306. Widdows J, Brinsley M (2002) Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. J Sea Res 48:143–156CrossRefGoogle Scholar
  307. Wieser W (1953) Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Arkiv für Zoologie 4:439–484Google Scholar
  308. Wieser W (1960) Benthic studies in Buzzards Bay. 2. The meiofauna. Limnol Oceanogr 5:121–137CrossRefGoogle Scholar
  309. Wiltshire KH, Blackburn J, Paterson DM (1997) The cryolander: a new method for in situ sampling of unconsolidated sediments minimising the distortion of sediment fabric. J Sediment Res 67:980–984CrossRefGoogle Scholar
  310. Xu K, Du Y, Lei Y, Dai R (2010) A practical method of Ludox density gradient centrifugation combined with protargol staining for extracting and estimating ciliates in marine sediments. Eur J Protistol 46:263–270PubMedCrossRefPubMedCentralGoogle Scholar
  311. Yoder M, Tandingan De Ley I, King IW, Mundo-Ocampo M, Mann J, Blaxter M, Poiras L, De Ley P (2006) DESS: a versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8:367–376CrossRefGoogle Scholar
  312. Zeppilli D, Sarrazin J, Leduc D, Martinez Arbizu P, Fontaneto D, Fontanier C, Gooday AJ, Kristensen RM, Ivanenko VN, Sørensen MV, Vanreusel A, Thébault J, Mea M, Allio N, Andro T, Arvigo A, Castrec J, Danielo M, Foulon V, Fumeron R, Hermabessiere L, Hulot V, James T, Langonne-Augen R, Le Bot T, Long M, Mahabror D, Morel Q, Pantalos M, Pouplard E, Raimondeau L, Rio-Cabello A, Seite S, Traisnel G, Urvoy K, Van Der Stegen T, Wey M, Fernandes D (2015) Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar Biodivers 45:505–535CrossRefGoogle Scholar
  313. Zühlke R, Blome D, van Bernem KH, Dittmann S (1998) Effects of the tube-building polychaete Lanice conchilega (Pallas) on benthic macrofauna and nematodes in an intertidal sandflat. Senckenberg Marit 29:131–138CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Marine Biology Research Group, Faculty of SciencesGhent UniversityGhentBelgium
  2. 2.Laboratoire de Biologie Marine, MMS, Faculté des SciencesUniversité de NantesNantesFrance

Personalised recommendations