Skip to main content

Microphytobenthic Biofilms: Composition and Interactions

  • Chapter
  • First Online:
Book cover Mudflat Ecology

Part of the book series: Aquatic Ecology Series ((AQEC,volume 7))

Abstract

Microphytobenthic biofilms in mudflats are characterised by a wide variety of microorganisms and the production of large quantities of extracellular polymeric substances (EPS). In this chapter, the diversity of microphytobenthos (MPB) is reviewed and the complex interactions that take place in mudflat biofilms between microalgae and bacteria are discussed. Microbial interaction in natural biofilms is an emerging field of study in mudflat ecosystems. Although emphasis is placed on EPS and EPS-mediated interactions, because they have received most of the research attention, more direct interactions such as communication and defence are also discussed. Most studies to date have dealt with monospecific or multispecific laboratory biofilms, and environmental studies are still very rare. The development of this field of study in mudflat ecosystems is clearly a major requirement in our understanding of the functioning of mudflat biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://westerndiatoms.colorado.edu/about/what_are_diatoms. Accessed Sept 2017.

    http://www.itcamefromthepond.com/2014/03/26/paddy-patterson. Accessed May 2018.

  2. 2.

    http://westerndiatoms.colorado.edu/about/what_are_diatoms. Accessed Sept 2017.

References

  • Adl SM, Leander BS, Simpson AGB, Archibald JM, Anderson OR, Bass D, Bowser SS, Brugerolle G, Farmer MA, Karpov S, Kolisko M, Lane CE, Lodge DJ, Mann DG, Meisterfeld R, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Smirnov AV, Spiegel F, Collins T, Sullivan J (2007) Diversity, nomenclature, and taxonomy of protists. Syst Biol 56:684–689

    Article  PubMed  Google Scholar 

  • Admiraal W (1984) The ecology of estuarine sediment-inhabiting diatoms. Prog Phycol Res 3:269–322

    Google Scholar 

  • Agogué H, Mallet C, Orvain F, De Crignis M, Mornet F, Dupuy C (2014) Bacterial dynamics in a microphytobenthic biofilm: a tidal mesocosm approach. J Sea Res 92:36–45

    Article  Google Scholar 

  • Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246

    Article  CAS  PubMed  Google Scholar 

  • Battin TJ, Sloan WT, Kjelleberg S, Daims H, Head IM, Curtis TP, Eberl L (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5:76–81

    Article  CAS  PubMed  Google Scholar 

  • Bedoshvili YD, Popkova TP, Likhoshway YV (2009) Chloroplast structure of diatoms of different classes. Cell Tissue Biol 3:297–310

    Article  Google Scholar 

  • Bell W, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull 143:265–277

    Article  Google Scholar 

  • Bellinger B, Underwood GJC, Ziegler S, Gretz MR (2009) Significance of diatom-derived polymers in carbon flow dynamics within estuarine biofilms determined through isotopic enrichment. Aquat Microb Ecol 55:169–187

    Article  Google Scholar 

  • Bhaskar PV, Bhosle NB (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci 88:45–53

    CAS  Google Scholar 

  • Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  CAS  PubMed  Google Scholar 

  • Bruckner CG, Bahulikar R, Rahalkar M, Schink B, Kroth PG (2008) Bacteria associated with benthic diatoms from Lake Constance: phylogeny and influences on diatom growth and secretion of extracellular polymeric substances. Appl Environ Microbiol 74:7740–7749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckling A, Brockhurst MA (2008) Kin selection and the evolution of virulence. Heredity (Edinb) 100:484–488

    Article  CAS  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signalling pathways. Science (80–) 311:1113–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartaxana P, Ruivo M, Hubas C, Davidson I, Serôdio J, Jesus B (2011) Physiological versus behavioural photoprotection in intertidal epipelic and epipsammic benthic diatom communities. J Exp Mar Biol Ecol 405:120–127

    Article  Google Scholar 

  • Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549

    Article  CAS  PubMed  Google Scholar 

  • Chiovitti A, Molino P, Crawford S a, Teng R, Spurck T, Wetherbee R (2004) The glucans extracted with warm water from diatoms are mainly derived from intracellular chrysolaminaran and not extracellular polysaccharides. Eur J Phycol 39:117–128

    Article  CAS  Google Scholar 

  • Cook P, Veuger B, Böer S, Middelburg J (2007) Effect of nutrient availability on carbon and nitrogen incorporation and flows through benthic algae and bacteria in near-shore sandy sediment. Aquat Microb Ecol 49:165–180

    Article  Google Scholar 

  • Corlett R (2017) A bigger toolbox: biotechnology in biodiversity conservation. Trends Biotechnol 35:55–65

    Article  CAS  PubMed  Google Scholar 

  • De Brouwer JFC, Stal LJ (2002) Daily fluctuations of exopolymers in cultures of the benthic diatoms Cylindrotheca closterium and Nitzschia sp. (Bacillariophyceae). J Phycol 38:464–472

    Article  Google Scholar 

  • de Brouwer JF, Ruddy GK, Jones TER, Stal LJ (2002) Sorption of EPS to sediment particles and the effect on the rheology of sediment slurries. Biogeochemistry 6:57–71

    Article  Google Scholar 

  • de Winder B, Staats N, Stal L, Paterson D (1999) Carbohydrate secretion by phototrophic communities in tidal sediments. J Sea Res 42:131–146

    Article  Google Scholar 

  • Decho A (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28:73–153

    Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • Decho AW, Visscher PT, Ferry J, Kawaguchi T, He L, Przekop KM, Norman RS, Reid RP (2009) Autoinducers extracted from microbial mats reveal a surprising diversity of N-acylhomoserine lactones (AHLs) and abundance changes that may relate to diel pH. Environ Microbiol 11:409–420

    Article  CAS  PubMed  Google Scholar 

  • Decho AW, Norman RS, Visscher PT (2010) Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol 18:73–80

    Article  CAS  PubMed  Google Scholar 

  • Decleyre H, Heylen K, Sabbe K, Tytgat B, Deforce D, Van Nieuwerburgh F, Van Colen C, Willems A (2015) A doubling of microphytobenthos biomass coincides with a tenfold increase in denitrifier and total bacterial abundances in intertidal sediments of a temperate estuary. PLoS One 10:e0126583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Derenbach JB, Pesando D (1986) Investigations into a small fraction of volatile hydrocarbons: III. Two diatom cultures produce ectocarpene, a pheromone of brown algae. Mar Chem 19:337–341

    Article  CAS  Google Scholar 

  • Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642

    Article  CAS  PubMed  Google Scholar 

  • Doghri I, Lavaud J, Dufour A, Bazire A, Lanneluc I, Sablé S (2017) Cell-bound exopolysaccharides from an axenic culture of the intertidal mudflat Navicula phyllepta diatom affect biofilm formation by benthic bacteria. J Appl Phycol 29:165–177

    Article  CAS  Google Scholar 

  • Elias S, Banin E (2012) Multi-species biofilms: living with friendly neighbours. FEMS Microbiol Rev 36:990–1004

    Article  CAS  PubMed  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Flemming H, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575

    Article  CAS  PubMed  Google Scholar 

  • Furusawa G, Yoshikawa T, Yasuda A, Sakata T (2003) Algicidal activity and gliding motility of Saprospira sp. SS98-5. Can J Microbiol 49:92–100

    Article  CAS  PubMed  Google Scholar 

  • Gerbersdorf SU, Wieprecht S (2015) Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture. Geobiology 13:68–97

    Article  CAS  PubMed  Google Scholar 

  • Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments, 2nd edn. Springer, Berlin, 527 p

    Google Scholar 

  • Giroldo D, Vieira AAH, Paulsen BS (2003) Relative increase of deoxy sugar during microbial degradation of an extracellular polysaccharide released by a tropical freshwater Thalassiosira sp (Bacillariophyceae). J Phycol 39:1109–1115

    Article  CAS  Google Scholar 

  • Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 106:103–122

    Article  CAS  PubMed  Google Scholar 

  • Grabowski RC, Droppo IG, Wharton G (2011) Erodibility of cohesive sediment: the importance of sediment properties. Earth Sci Rev 105:101–120

    Article  Google Scholar 

  • Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063

    Article  PubMed  Google Scholar 

  • Haber S, Brenner H (1993) Effect of entrained colloidal particles in enhancing the transport of adsorbable chemical contaminants. J Colloid Interface Sci 155:226–246

    Article  CAS  Google Scholar 

  • Hanlon ARM, Bellinger B, Haynes K, Xiao G, Hofmann TA, Gretz MR, Ball AS, Osborn AM, Underwood GJC (2006) Dynamics of extracellular polymeric substance (EPS) production and loss in an estuarine, diatom-dominated, microalgal biofilm over a tidal emersion-immersion period. Limnol Oceanogr 51:79–93

    Article  CAS  Google Scholar 

  • Harel A, Karkar S, Cheng S, Falkowski PG, Bhattacharya D (2015) Deciphering primordial cyanobacterial genome functions from protein network analysis. Curr Biol 25:628–634

    Article  CAS  PubMed  Google Scholar 

  • Haynes K, Hofmann TA, Smith CJ, Ball AS, Underwood GJC, Osborn AM (2007) Diatom-derived carbohydrates as factors affecting bacterial community composition in estuarine sediments. Appl Environ Microbiol 73:6112–6124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland KD, Rosowski JR, Gretz MR, Roemer SC (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol 29:537–566

    Article  CAS  Google Scholar 

  • Hombeck M, Boland W (1998) Biosynthesis of the algal pheromone fucoserratene by the freshwater diatom Asterionella formosa (Bacillariophyceae). Tetrahedron 54:11033–11042

    Article  CAS  Google Scholar 

  • Hoppe H-G (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308

    Article  CAS  Google Scholar 

  • Hubas C, Sachidhanandam C, Rybarczyk H, Lubarsky H, Rigaux A, Moens T, Paterson D (2010) Bacterivorous nematodes stimulate microbial growth and exopolymer production in marine sediment microcosms. Mar Ecol Prog Ser 419:85–94

    Article  Google Scholar 

  • Hubas C, Jesus B, Ruivo M, Meziane T, Thiney N, Davoult D, Spilmont N, Paterson DM, Jeanthon C (2013) Proliferation of purple sulphur bacteria at the sediment surface affects intertidal mat diversity and functionality. PLoS One. https://doi.org/10.1371/journal.pone.0082329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hubas C, Boeuf D, Jesus B, Thiney N, Bozec Y, Jeanthon C (2017) A nanoscale study of carbon and nitrogen fluxes in mats of purple sulfur bacteria: implications for carbon cycling at the surface of coastal sediments. Front Microbiol 8:1995

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi N, Ngwenya BT, French CE (2012) Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. J Hazard Mater 241–242:363–370

    Article  PubMed  CAS  Google Scholar 

  • Jüttner F (2001) Liberation of 5,8,11,14,17-eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defence reaction in epilithic diatom biofilms. J Phycol 37:744–755

    Article  Google Scholar 

  • Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258

    Article  CAS  PubMed  Google Scholar 

  • Khanna N (2014) The biological response of foraminifera to ocean acidification. PhD dissertation, University of St Andrews

    Google Scholar 

  • Krumbein WE, Paterson DM, Zavazin G (eds) (2003) Fossil and Recent biofilms: a natural history of life on earth. Kluwer Academic, Dordrecht. ISBN 1-4020-1597-6. 504 pp

    Google Scholar 

  • Larson F, Lubarsky H, Gerbersdorf SU, Paterson DM (2009) Surface adhesion measurements in aquatic biofilms using magnetic particle induction: MagPI. Limnol Oceanogr Methods 7:490–497

    Article  Google Scholar 

  • Laspidou CS, Rittmann BE (2002) A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res 36:2711–2720

    Article  CAS  PubMed  Google Scholar 

  • Lee JJ (2001) Living sands: symbiosis between foraminifera and algae. In: Seckbach J (ed) Symbiosis. Cellular origin, life in extreme habitats and astrobiology, vol 4. Kluwer Academic, Dordrecht, pp 489–506

    Google Scholar 

  • Leinweber K, Kroth PG (2015) Capsules of the diatom Achnanthidium minutissimum arise from fibrillar precursors and foster attachment of bacteria. PeerJ 3:e858

    Article  PubMed  PubMed Central  Google Scholar 

  • Lubarsky HV, Hubas C, Chocholek M, Larson F, Manz W, Paterson DM, Gerbersdorf SU (2010) The stabilisation potential of individual and mixed assemblages of natural bacteria and microalgae. PLoS One 5:e13794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lundkvist M, Gangelhof U, Lunding J, Flindt MR (2007a) Production and fate of extracellular polymeric substances produced by benthic diatoms and bacteria: a laboratory study. Estuar Coast Shelf Sci 75:337–346

    Article  CAS  Google Scholar 

  • Lundkvist M, Grue M, Friend PL, Flindt MR (2007b) The relative contributions of physical and microbiological factors to cohesive sediment stability. Cont Shelf Res 27:1143–1152

    Article  Google Scholar 

  • Mann DG, Droop SJM (1996) Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336:19–32

    Article  Google Scholar 

  • McKew BA, Dumbrell AJ, Taylor JD, McGenity TJ, Underwood GJC (2013) Differences between aerobic and anaerobic degradation of microphytobenthic biofilm-derived organic matter within intertidal sediments. FEMS Microbiol Ecol 84:495–509

    Article  CAS  PubMed  Google Scholar 

  • Medlin LK (2016) Evolution of the diatoms: major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia 55:79–103

    Article  CAS  Google Scholar 

  • Meng Z, Xu K, Lei Y (2011) Community composition, distribution, and contribution of microbenthos in offshore sediments from the Yellow Sea. Cont Shelf Res 31:1437–1446

    Article  Google Scholar 

  • Meyer-Reil L-A (1994) Microbial life in sedimentary biofilms the challenge to microbial ecologists. Mar Ecol Prog Ser 112:303–311

    Article  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol:165–199

    Article  CAS  PubMed  Google Scholar 

  • Moeys S, Frenkel J, Lembke C, Gillard JTF, Devos V, Van den Berge K, Bouillon B, Huysman MJJ, De Decker S, Scharf J, Bones A, Brembu T, Winge P, Sabbe K, Vuylsteke M, Clement L, De Veylder L, Pohnert G, Vyverman W (2016) A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Sci Rep 6:19252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noffke N, Paterson D (2007) Microbial interactions with physical sediment dynamics, and their significance for the interpretation of Earth’s biological history. Geobiology 6:1–4

    Article  Google Scholar 

  • Oakes JM, Eyre BD, Middelburg JJ, Boschker HTS (2010) Composition, production, and loss of carbohydrates in subtropical shallow subtidal sandy sediments: rapid processing and long-term retention revealed by 13C-labeling. Limnol Oceanogr 55:2126–2138

    Article  CAS  Google Scholar 

  • Onaka H, Ando N, Nihira T, Yamada Y, Beppu T, Horinouchi S (1995) Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J Bacteriol 177:6083–6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orvain F, Galois R, Barnard C, Sylvestre A, Blanchard G, Sauriau P-G (2003) Carbohydrate production in relation to microphytobenthic biofilm development: an integrated approach in a tidal mesocosm. Microb Ecol 45:237–251

    Article  CAS  PubMed  Google Scholar 

  • Orvain F, De Crignis M, Guizien K, Lefebvre S, Mallet C, Takahashi E, Dupuy C (2014) Tidal and seasonal effects on the short-term temporal patterns of bacteria, microphytobenthos and exopolymers in natural intertidal biofilms (Brouage, France). J Sea Res 92:6–18

    Article  Google Scholar 

  • Paine RT (1969) A note on trophic complexity and community stability. Am Nat 103:91–93

    Article  Google Scholar 

  • Pasmore M, Costerton JW (2003) Biofilms, bacterial signalling, and their ties to marine biology. J Ind Microbiol Biotechnol 30:407–413

    Article  CAS  PubMed  Google Scholar 

  • Passarelli C, Olivier F, Paterson DM, Meziane T, Hubas C (2014) Organisms as cooperative ecosystem engineers in intertidal flats. J Sea Res 92:92–101

    Article  Google Scholar 

  • Passarelli C, Meziane T, Thiney N, Boeuf D, Jesus B, Ruivo M, Jeanthon C, Hubas C (2015) Seasonal variations of the composition of microbial biofilms in sandy tidal flats: focus of fatty acids, pigments and exopolymers. Estuar Coast Shelf Sci 153:29–37

    Article  CAS  Google Scholar 

  • Paterson D (1989) Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behaviour of epipelic diatoms. Limnol Oceanogr 34:223–234

    Article  Google Scholar 

  • Paterson DM, Hagerthey SE (2001) Microphytobenthos in contrasting coastal ecosystems: biology and dynamics. In: Reise K (ed) Ecological comparisons of sedimentary shores. Springer, Berlin, pp 105–125

    Chapter  Google Scholar 

  • Paterson DM, Wiltshire KH, Miles A, Blackburn TH, Davison I, Yates MG, McGrorty S, Eastwood JA (1998) Microbiological mediation of spectral reflectance from intertidal cohesive sediments. Limnol Oceanogr 43:1207–1221

    Article  Google Scholar 

  • Paterson DM, Aspden RJ, Visscher PT, Consalvey M, Andres MS, Decho AW, Stolz J, Reid RP (2008) Light-dependant biostabilisation of sediments by stromatolite assemblages. PLoS One 3:e3176. https://doi.org/10.1371/journal.pone.0003176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson DM, Aspden RJ, Black KS (2009) Intertidal flats: ecosystem functioning of soft sediment systems. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam, pp 317–338

    Google Scholar 

  • Pawlowski J, Lejzerowicz F, Esling P (2014) Next-generation environmental diversity surveys of foraminifera: preparing the future. Biol Bull 227:93–106

    Article  CAS  PubMed  Google Scholar 

  • Perkins R, Underwood G, Brotas V, Snow G, Jesus B, Ribeiro L (2001) Responses of microphytobenthos to light: primary production and carbohydrate allocation over an emersion period. Mar Ecol Prog Ser 223:101–112

    Article  Google Scholar 

  • Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signalling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierre G, Graber M, Orvain F, Dupuy C, Maugard T (2010) Biochemical characterization of extracellular polymeric substances extracted from an intertidal mudflat using a cation exchange resin. Biochem Syst Ecol 38:917–923

    Article  CAS  Google Scholar 

  • Pohnert G, Boland W (1996) Biosynthesis of the algal pheromone hormosirene by the fresh-water diatom Gomphonema parvulum (Bacillariophyceae). Tetrahedron 52:10073–10082

    Article  CAS  Google Scholar 

  • Pompanon F, Samadi S (2015) Next generation sequencing for characterizing biodiversity: promises and challenges. Genetica 143:133–138

    Article  PubMed  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen NC, Spector I, Spurck TP, Schultz TF, Wetherbee R (1999) Diatom gliding is the result of an actin-myosin motility system. Cell Motil Cytoskeleton 44:23–33

    Article  CAS  PubMed  Google Scholar 

  • Riding R (2011) The nature of stromatolites: 3,500 million years of history and a century of research. Springer, Berlin, pp 29–74

    Google Scholar 

  • Riemann F, Helmke E (2002) Symbiotic relations of sediment-agglutinating nematodes and bacteria in detrital habitats: the enzyme-sharing concept. Mar Ecol 23:93–113

    Article  CAS  Google Scholar 

  • Rolland JL, Stien D, Sanchez-Ferandin S, Lami R (2016) Quorum sensing and quorum quenching in the phycosphere of phytoplankton: a case of chemical interactions in ecology. J Chem Ecol 42:1201–1211

    Article  CAS  PubMed  Google Scholar 

  • Rossello-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Ecol 25:39–67

    Article  CAS  Google Scholar 

  • Round FE (1981) The ecology of algae. Cambridge University Press, Cambridge, 653 pp

    Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: biology & morphology of the genera. Cambridge University Press

    Google Scholar 

  • Sanders RW (1991) Mixotrophic protists in marine and freshwater ecosystems. J Protozool 38:76–81

    Article  Google Scholar 

  • Sapp M, Schwaderer AS, Wiltshire KH, Hoppe H-G, Gerdts G, Wichels A (2007) Species-specific bacterial communities in the phycosphere of microalgae? Microb Ecol 53:683–699

    Article  PubMed  Google Scholar 

  • Sato S, Beakes G, Idei M, Nagumo T, Mann DG, Anderson O (2011) Novel sex cells and evidence for sex pheromones in diatoms. PLoS One 6:e26923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer K, Rickard AH, Davies DG (2007) Biofilms and biocomplexity. Microbe 2:347–353

    Google Scholar 

  • Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, Peres CM, Schmidt S, Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599

    Article  CAS  PubMed  Google Scholar 

  • Schäfer H, Abbas B, Witte H, Muyzer G (2002) Genetic diversity of “satellite” bacteria present in cultures of marine diatoms. FEMS Microbiol Ecol 42:25–35

    PubMed  Google Scholar 

  • Serôdio J, Marques da Silva J, Catarino F (1997) Non-destructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence. J Phycol 33:542–553

    Article  Google Scholar 

  • Shih PM (2015) Cyanobacterial evolution: fresh insight into ancient questions. Curr Biol 25:R192–R193

    Article  CAS  PubMed  Google Scholar 

  • Smith DJ, Underwood GJC (1998) Exopolymer production by intertidal epipelic diatoms. Limnol Oceanogr 43:1578–1591

    Article  CAS  Google Scholar 

  • Smith DJ, Underwood GMC (2000) The production of extracellular carbohydrates by estuarine benthic diatoms: the effects of growth phase and light and dark treatment. J Phycol 36:321–333

    Article  CAS  Google Scholar 

  • Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96–104

    Article  CAS  PubMed  Google Scholar 

  • Staats N, Stal L, de Winder B, Mur L (2000) Oxygenic photosynthesis as driving process in exopolysaccharide production of benthic diatoms. Mar Ecol Prog Ser 193:261–269

    Article  CAS  Google Scholar 

  • Stal LJ (2003) Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol J 20:463–478

    Article  CAS  Google Scholar 

  • Stal LJ (2010) Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization. Ecol Eng 36:236–245

    Article  Google Scholar 

  • Stal LJ (2015) Nitrogen fixation in cyanobacteria. In: eLS encylopedia of life science. Wiley, Chichester, pp 1–9

    Google Scholar 

  • Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    Article  CAS  PubMed  Google Scholar 

  • Sutherland TF, Grant J, Amos CL (1998) The effect of carbohydrate production by the diatom Nitzschia curvilineata on the erodibility of sediment. Limnol Oceanogr 43:65–72

    Article  CAS  Google Scholar 

  • Syrpas M, Ruysbergh E, Blommaert L, Vanelslander B, Sabbe K, Vyverman W, De Kimpe N, Mangelinckx S (2014) Haloperoxidase mediated quorum quenching by Nitzschia cf pellucida: study of the metabolization of N-acyl homoserine lactones by a benthic diatom. Mar Drugs 12:352–367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi E, Ledauphin J, Goux D, Orvain F (2009) Optimising extraction of extracellular polymeric substances (EPS) from benthic diatoms: comparison of the efficiency of six EPS extraction methods. Mar Freshw Res 60:1201

    Article  CAS  Google Scholar 

  • Taylor IS, Paterson DM, Mehlert A (1999) The quantitative variability and monosaccharide composition of sediment carbohydrates associated with intertidal diatom assemblages. Biogeochemistry 45(3):303–327

    CAS  Google Scholar 

  • Taylor JD, Mckew BA, Kuhl A, McGenity TJ, Underwood GJC (2013) Microphytobenthic extracellular polymeric substances (EPS) in intertidal sediments fuel both generalist and specialist EPS-degrading bacteria. Limnol Oceanogr 58:1463–1480

    Article  CAS  Google Scholar 

  • Underwood GJC, Paterson DM (2003) The importance of extracellular carbohydrate production by marine epipelic diatoms. Adv Bot Res 40:183–240

    Article  CAS  Google Scholar 

  • Underwood GJC, Boulcott M, Raines CA, Waldron K (2004) Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition, and pathways of production. J Phycol 40:293–304

    Article  CAS  Google Scholar 

  • van Duyl FC, de Winder B, Kop AJ, Wollenzien U (1999) Tidal coupling between carbohydrate concentrations and bacterial activities in diatom-inhabited intertidal mudflats. Mar Ecol Prog Ser 191:19–32

    Article  Google Scholar 

  • van Duyl FC, de Winder B, Kop AJ, Wollenzien U (2000) Consequences of diatom mat erosion for carbohydrate concentrations and heterotrophic bacterial activities in intertidal sediments of the Ems-Dollard estuary. Cont Shelf Res 20:1335–1349

    Article  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487–1487

    Article  CAS  PubMed  Google Scholar 

  • Whitton BA (1992) Diversity, ecology, and taxonomy of the cyanobacteria. In: Prokaryotes P (ed) Biotechnology handbooks 6. Springer, Boston, MA, pp 1–51

    Google Scholar 

  • Worm B, Duffy JE (2003) Biodiversity, productivity and stability in real food webs. Trends Ecol Evol 18:628–632

    Article  Google Scholar 

  • Wotton RS (2004a) The ubiquity and many roles of exopolymers (EPS) in aquatic systems. Sci Mar 68:13–21

    Article  CAS  Google Scholar 

  • Wotton RS (2004b) The essential role of exopolymers (EPS) in aquatic systems. Oceanogr Mar Biol 42:57–94

    Article  Google Scholar 

  • Yallop ML, de Winder B, Paterson DM, Stal LJ (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar Coast Shelf Sci 39:565–582

    Article  Google Scholar 

  • Ziegler M, Uthicke S (2011) Photosynthetic plasticity of endosymbionts in larger benthic coral reef Foraminifera. J Exp Mar Biol Ecol 407:70–80

    Article  Google Scholar 

Download references

Acknowledgments

CH was supported by the BIO-Tide project, funded through the 2015–2016 BiodivERsA COFUND call for research proposals, with the national funders BelSPO, FWO, ANR and SNSF. CP receives funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 702217. Results presented in Fig. 4.2 stem from work supported by a JSPS fellowship to CP (grant number PE 14764), and this support is gratefully acknowledged. DMP received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland funded by the Scottish Funding Council; grant reference HR09011) and contributing institutions, and work reported stems from support provided by the Templeton Foundation (JTF number 60501) and the NERC Blue-coast consortium (NE/N016009/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Hubas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hubas, C., Passarelli, C., Paterson, D.M. (2018). Microphytobenthic Biofilms: Composition and Interactions. In: Beninger, P. (eds) Mudflat Ecology. Aquatic Ecology Series, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-99194-8_4

Download citation

Publish with us

Policies and ethics