Microphytobenthic Biofilms: Composition and Interactions

  • Cédric HubasEmail author
  • Claire Passarelli
  • David M. Paterson
Part of the Aquatic Ecology Series book series (AQEC, volume 7)


Microphytobenthic biofilms in mudflats are characterised by a wide variety of microorganisms and the production of large quantities of extracellular polymeric substances (EPS). In this chapter, the diversity of microphytobenthos (MPB) is reviewed and the complex interactions that take place in mudflat biofilms between microalgae and bacteria are discussed. Microbial interaction in natural biofilms is an emerging field of study in mudflat ecosystems. Although emphasis is placed on EPS and EPS-mediated interactions, because they have received most of the research attention, more direct interactions such as communication and defence are also discussed. Most studies to date have dealt with monospecific or multispecific laboratory biofilms, and environmental studies are still very rare. The development of this field of study in mudflat ecosystems is clearly a major requirement in our understanding of the functioning of mudflat biofilms.



CH was supported by the BIO-Tide project, funded through the 2015–2016 BiodivERsA COFUND call for research proposals, with the national funders BelSPO, FWO, ANR and SNSF. CP receives funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 702217. Results presented in Fig. 4.2 stem from work supported by a JSPS fellowship to CP (grant number PE 14764), and this support is gratefully acknowledged. DMP received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland funded by the Scottish Funding Council; grant reference HR09011) and contributing institutions, and work reported stems from support provided by the Templeton Foundation (JTF number 60501) and the NERC Blue-coast consortium (NE/N016009/1).


  1. Adl SM, Leander BS, Simpson AGB, Archibald JM, Anderson OR, Bass D, Bowser SS, Brugerolle G, Farmer MA, Karpov S, Kolisko M, Lane CE, Lodge DJ, Mann DG, Meisterfeld R, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Smirnov AV, Spiegel F, Collins T, Sullivan J (2007) Diversity, nomenclature, and taxonomy of protists. Syst Biol 56:684–689PubMedCrossRefPubMedCentralGoogle Scholar
  2. Admiraal W (1984) The ecology of estuarine sediment-inhabiting diatoms. Prog Phycol Res 3:269–322Google Scholar
  3. Agogué H, Mallet C, Orvain F, De Crignis M, Mornet F, Dupuy C (2014) Bacterial dynamics in a microphytobenthic biofilm: a tidal mesocosm approach. J Sea Res 92:36–45CrossRefGoogle Scholar
  4. Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246PubMedCrossRefPubMedCentralGoogle Scholar
  6. Battin TJ, Sloan WT, Kjelleberg S, Daims H, Head IM, Curtis TP, Eberl L (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5:76–81PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bedoshvili YD, Popkova TP, Likhoshway YV (2009) Chloroplast structure of diatoms of different classes. Cell Tissue Biol 3:297–310CrossRefGoogle Scholar
  8. Bell W, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull 143:265–277CrossRefGoogle Scholar
  9. Bellinger B, Underwood GJC, Ziegler S, Gretz MR (2009) Significance of diatom-derived polymers in carbon flow dynamics within estuarine biofilms determined through isotopic enrichment. Aquat Microb Ecol 55:169–187CrossRefGoogle Scholar
  10. Bhaskar PV, Bhosle NB (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci 88:45–53Google Scholar
  11. Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bruckner CG, Bahulikar R, Rahalkar M, Schink B, Kroth PG (2008) Bacteria associated with benthic diatoms from Lake Constance: phylogeny and influences on diatom growth and secretion of extracellular polymeric substances. Appl Environ Microbiol 74:7740–7749PubMedPubMedCentralCrossRefGoogle Scholar
  13. Buckling A, Brockhurst MA (2008) Kin selection and the evolution of virulence. Heredity (Edinb) 100:484–488CrossRefGoogle Scholar
  14. Camilli A, Bassler BL (2006) Bacterial small-molecule signalling pathways. Science (80–) 311:1113–1116PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cartaxana P, Ruivo M, Hubas C, Davidson I, Serôdio J, Jesus B (2011) Physiological versus behavioural photoprotection in intertidal epipelic and epipsammic benthic diatom communities. J Exp Mar Biol Ecol 405:120–127CrossRefGoogle Scholar
  16. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chiovitti A, Molino P, Crawford S a, Teng R, Spurck T, Wetherbee R (2004) The glucans extracted with warm water from diatoms are mainly derived from intracellular chrysolaminaran and not extracellular polysaccharides. Eur J Phycol 39:117–128CrossRefGoogle Scholar
  18. Cook P, Veuger B, Böer S, Middelburg J (2007) Effect of nutrient availability on carbon and nitrogen incorporation and flows through benthic algae and bacteria in near-shore sandy sediment. Aquat Microb Ecol 49:165–180CrossRefGoogle Scholar
  19. Corlett R (2017) A bigger toolbox: biotechnology in biodiversity conservation. Trends Biotechnol 35:55–65PubMedCrossRefPubMedCentralGoogle Scholar
  20. De Brouwer JFC, Stal LJ (2002) Daily fluctuations of exopolymers in cultures of the benthic diatoms Cylindrotheca closterium and Nitzschia sp. (Bacillariophyceae). J Phycol 38:464–472CrossRefGoogle Scholar
  21. de Brouwer JF, Ruddy GK, Jones TER, Stal LJ (2002) Sorption of EPS to sediment particles and the effect on the rheology of sediment slurries. Biogeochemistry 6:57–71CrossRefGoogle Scholar
  22. de Winder B, Staats N, Stal L, Paterson D (1999) Carbohydrate secretion by phototrophic communities in tidal sediments. J Sea Res 42:131–146CrossRefGoogle Scholar
  23. Decho A (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28:73–153Google Scholar
  24. Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273CrossRefGoogle Scholar
  25. Decho AW, Visscher PT, Ferry J, Kawaguchi T, He L, Przekop KM, Norman RS, Reid RP (2009) Autoinducers extracted from microbial mats reveal a surprising diversity of N-acylhomoserine lactones (AHLs) and abundance changes that may relate to diel pH. Environ Microbiol 11:409–420PubMedCrossRefPubMedCentralGoogle Scholar
  26. Decho AW, Norman RS, Visscher PT (2010) Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol 18:73–80PubMedCrossRefPubMedCentralGoogle Scholar
  27. Decleyre H, Heylen K, Sabbe K, Tytgat B, Deforce D, Van Nieuwerburgh F, Van Colen C, Willems A (2015) A doubling of microphytobenthos biomass coincides with a tenfold increase in denitrifier and total bacterial abundances in intertidal sediments of a temperate estuary. PLoS One 10:e0126583PubMedPubMedCentralCrossRefGoogle Scholar
  28. Derenbach JB, Pesando D (1986) Investigations into a small fraction of volatile hydrocarbons: III. Two diatom cultures produce ectocarpene, a pheromone of brown algae. Mar Chem 19:337–341CrossRefGoogle Scholar
  29. Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642PubMedCrossRefPubMedCentralGoogle Scholar
  30. Doghri I, Lavaud J, Dufour A, Bazire A, Lanneluc I, Sablé S (2017) Cell-bound exopolysaccharides from an axenic culture of the intertidal mudflat Navicula phyllepta diatom affect biofilm formation by benthic bacteria. J Appl Phycol 29:165–177CrossRefGoogle Scholar
  31. Elias S, Banin E (2012) Multi-species biofilms: living with friendly neighbours. FEMS Microbiol Rev 36:990–1004PubMedCrossRefPubMedCentralGoogle Scholar
  32. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633PubMedPubMedCentralCrossRefGoogle Scholar
  33. Flemming H, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575PubMedCrossRefPubMedCentralGoogle Scholar
  34. Furusawa G, Yoshikawa T, Yasuda A, Sakata T (2003) Algicidal activity and gliding motility of Saprospira sp. SS98-5. Can J Microbiol 49:92–100PubMedCrossRefPubMedCentralGoogle Scholar
  35. Gerbersdorf SU, Wieprecht S (2015) Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture. Geobiology 13:68–97PubMedCrossRefPubMedCentralGoogle Scholar
  36. Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments, 2nd edn. Springer, Berlin, 527 pGoogle Scholar
  37. Giroldo D, Vieira AAH, Paulsen BS (2003) Relative increase of deoxy sugar during microbial degradation of an extracellular polysaccharide released by a tropical freshwater Thalassiosira sp (Bacillariophyceae). J Phycol 39:1109–1115CrossRefGoogle Scholar
  38. Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 106:103–122PubMedCrossRefPubMedCentralGoogle Scholar
  39. Grabowski RC, Droppo IG, Wharton G (2011) Erodibility of cohesive sediment: the importance of sediment properties. Earth Sci Rev 105:101–120CrossRefGoogle Scholar
  40. Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063PubMedCrossRefPubMedCentralGoogle Scholar
  41. Haber S, Brenner H (1993) Effect of entrained colloidal particles in enhancing the transport of adsorbable chemical contaminants. J Colloid Interface Sci 155:226–246CrossRefGoogle Scholar
  42. Hanlon ARM, Bellinger B, Haynes K, Xiao G, Hofmann TA, Gretz MR, Ball AS, Osborn AM, Underwood GJC (2006) Dynamics of extracellular polymeric substance (EPS) production and loss in an estuarine, diatom-dominated, microalgal biofilm over a tidal emersion-immersion period. Limnol Oceanogr 51:79–93CrossRefGoogle Scholar
  43. Harel A, Karkar S, Cheng S, Falkowski PG, Bhattacharya D (2015) Deciphering primordial cyanobacterial genome functions from protein network analysis. Curr Biol 25:628–634PubMedCrossRefPubMedCentralGoogle Scholar
  44. Haynes K, Hofmann TA, Smith CJ, Ball AS, Underwood GJC, Osborn AM (2007) Diatom-derived carbohydrates as factors affecting bacterial community composition in estuarine sediments. Appl Environ Microbiol 73:6112–6124PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hoagland KD, Rosowski JR, Gretz MR, Roemer SC (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol 29:537–566CrossRefGoogle Scholar
  46. Hombeck M, Boland W (1998) Biosynthesis of the algal pheromone fucoserratene by the freshwater diatom Asterionella formosa (Bacillariophyceae). Tetrahedron 54:11033–11042CrossRefGoogle Scholar
  47. Hoppe H-G (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308CrossRefGoogle Scholar
  48. Hubas C, Sachidhanandam C, Rybarczyk H, Lubarsky H, Rigaux A, Moens T, Paterson D (2010) Bacterivorous nematodes stimulate microbial growth and exopolymer production in marine sediment microcosms. Mar Ecol Prog Ser 419:85–94CrossRefGoogle Scholar
  49. Hubas C, Jesus B, Ruivo M, Meziane T, Thiney N, Davoult D, Spilmont N, Paterson DM, Jeanthon C (2013) Proliferation of purple sulphur bacteria at the sediment surface affects intertidal mat diversity and functionality. PLoS One. Scholar
  50. Hubas C, Boeuf D, Jesus B, Thiney N, Bozec Y, Jeanthon C (2017) A nanoscale study of carbon and nitrogen fluxes in mats of purple sulfur bacteria: implications for carbon cycling at the surface of coastal sediments. Front Microbiol 8:1995PubMedPubMedCentralCrossRefGoogle Scholar
  51. Joshi N, Ngwenya BT, French CE (2012) Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. J Hazard Mater 241–242:363–370PubMedCrossRefPubMedCentralGoogle Scholar
  52. Jüttner F (2001) Liberation of 5,8,11,14,17-eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defence reaction in epilithic diatom biofilms. J Phycol 37:744–755CrossRefGoogle Scholar
  53. Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258PubMedCrossRefPubMedCentralGoogle Scholar
  54. Khanna N (2014) The biological response of foraminifera to ocean acidification. PhD dissertation, University of St AndrewsGoogle Scholar
  55. Krumbein WE, Paterson DM, Zavazin G (eds) (2003) Fossil and Recent biofilms: a natural history of life on earth. Kluwer Academic, Dordrecht. ISBN 1-4020-1597-6. 504 ppGoogle Scholar
  56. Larson F, Lubarsky H, Gerbersdorf SU, Paterson DM (2009) Surface adhesion measurements in aquatic biofilms using magnetic particle induction: MagPI. Limnol Oceanogr Methods 7:490–497CrossRefGoogle Scholar
  57. Laspidou CS, Rittmann BE (2002) A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res 36:2711–2720PubMedCrossRefPubMedCentralGoogle Scholar
  58. Lee JJ (2001) Living sands: symbiosis between foraminifera and algae. In: Seckbach J (ed) Symbiosis. Cellular origin, life in extreme habitats and astrobiology, vol 4. Kluwer Academic, Dordrecht, pp 489–506Google Scholar
  59. Leinweber K, Kroth PG (2015) Capsules of the diatom Achnanthidium minutissimum arise from fibrillar precursors and foster attachment of bacteria. PeerJ 3:e858PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lubarsky HV, Hubas C, Chocholek M, Larson F, Manz W, Paterson DM, Gerbersdorf SU (2010) The stabilisation potential of individual and mixed assemblages of natural bacteria and microalgae. PLoS One 5:e13794PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lundkvist M, Gangelhof U, Lunding J, Flindt MR (2007a) Production and fate of extracellular polymeric substances produced by benthic diatoms and bacteria: a laboratory study. Estuar Coast Shelf Sci 75:337–346CrossRefGoogle Scholar
  62. Lundkvist M, Grue M, Friend PL, Flindt MR (2007b) The relative contributions of physical and microbiological factors to cohesive sediment stability. Cont Shelf Res 27:1143–1152CrossRefGoogle Scholar
  63. Mann DG, Droop SJM (1996) Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336:19–32CrossRefGoogle Scholar
  64. McKew BA, Dumbrell AJ, Taylor JD, McGenity TJ, Underwood GJC (2013) Differences between aerobic and anaerobic degradation of microphytobenthic biofilm-derived organic matter within intertidal sediments. FEMS Microbiol Ecol 84:495–509PubMedCrossRefPubMedCentralGoogle Scholar
  65. Medlin LK (2016) Evolution of the diatoms: major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia 55:79–103CrossRefGoogle Scholar
  66. Meng Z, Xu K, Lei Y (2011) Community composition, distribution, and contribution of microbenthos in offshore sediments from the Yellow Sea. Cont Shelf Res 31:1437–1446CrossRefGoogle Scholar
  67. Meyer-Reil L-A (1994) Microbial life in sedimentary biofilms the challenge to microbial ecologists. Mar Ecol Prog Ser 112:303–311CrossRefGoogle Scholar
  68. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol:165–199PubMedCrossRefPubMedCentralGoogle Scholar
  69. Moeys S, Frenkel J, Lembke C, Gillard JTF, Devos V, Van den Berge K, Bouillon B, Huysman MJJ, De Decker S, Scharf J, Bones A, Brembu T, Winge P, Sabbe K, Vuylsteke M, Clement L, De Veylder L, Pohnert G, Vyverman W (2016) A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Sci Rep 6:19252PubMedPubMedCentralCrossRefGoogle Scholar
  70. Noffke N, Paterson D (2007) Microbial interactions with physical sediment dynamics, and their significance for the interpretation of Earth’s biological history. Geobiology 6:1–4CrossRefGoogle Scholar
  71. Oakes JM, Eyre BD, Middelburg JJ, Boschker HTS (2010) Composition, production, and loss of carbohydrates in subtropical shallow subtidal sandy sediments: rapid processing and long-term retention revealed by 13C-labeling. Limnol Oceanogr 55:2126–2138CrossRefGoogle Scholar
  72. Onaka H, Ando N, Nihira T, Yamada Y, Beppu T, Horinouchi S (1995) Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J Bacteriol 177:6083–6092PubMedPubMedCentralCrossRefGoogle Scholar
  73. Orvain F, Galois R, Barnard C, Sylvestre A, Blanchard G, Sauriau P-G (2003) Carbohydrate production in relation to microphytobenthic biofilm development: an integrated approach in a tidal mesocosm. Microb Ecol 45:237–251PubMedCrossRefPubMedCentralGoogle Scholar
  74. Orvain F, De Crignis M, Guizien K, Lefebvre S, Mallet C, Takahashi E, Dupuy C (2014) Tidal and seasonal effects on the short-term temporal patterns of bacteria, microphytobenthos and exopolymers in natural intertidal biofilms (Brouage, France). J Sea Res 92:6–18CrossRefGoogle Scholar
  75. Paine RT (1969) A note on trophic complexity and community stability. Am Nat 103:91–93CrossRefGoogle Scholar
  76. Pasmore M, Costerton JW (2003) Biofilms, bacterial signalling, and their ties to marine biology. J Ind Microbiol Biotechnol 30:407–413PubMedCrossRefPubMedCentralGoogle Scholar
  77. Passarelli C, Olivier F, Paterson DM, Meziane T, Hubas C (2014) Organisms as cooperative ecosystem engineers in intertidal flats. J Sea Res 92:92–101CrossRefGoogle Scholar
  78. Passarelli C, Meziane T, Thiney N, Boeuf D, Jesus B, Ruivo M, Jeanthon C, Hubas C (2015) Seasonal variations of the composition of microbial biofilms in sandy tidal flats: focus of fatty acids, pigments and exopolymers. Estuar Coast Shelf Sci 153:29–37CrossRefGoogle Scholar
  79. Paterson D (1989) Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behaviour of epipelic diatoms. Limnol Oceanogr 34:223–234CrossRefGoogle Scholar
  80. Paterson DM, Hagerthey SE (2001) Microphytobenthos in contrasting coastal ecosystems: biology and dynamics. In: Reise K (ed) Ecological comparisons of sedimentary shores. Springer, Berlin, pp 105–125CrossRefGoogle Scholar
  81. Paterson DM, Wiltshire KH, Miles A, Blackburn TH, Davison I, Yates MG, McGrorty S, Eastwood JA (1998) Microbiological mediation of spectral reflectance from intertidal cohesive sediments. Limnol Oceanogr 43:1207–1221CrossRefGoogle Scholar
  82. Paterson DM, Aspden RJ, Visscher PT, Consalvey M, Andres MS, Decho AW, Stolz J, Reid RP (2008) Light-dependant biostabilisation of sediments by stromatolite assemblages. PLoS One 3:e3176. Scholar
  83. Paterson DM, Aspden RJ, Black KS (2009) Intertidal flats: ecosystem functioning of soft sediment systems. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam, pp 317–338Google Scholar
  84. Pawlowski J, Lejzerowicz F, Esling P (2014) Next-generation environmental diversity surveys of foraminifera: preparing the future. Biol Bull 227:93–106PubMedCrossRefPubMedCentralGoogle Scholar
  85. Perkins R, Underwood G, Brotas V, Snow G, Jesus B, Ribeiro L (2001) Responses of microphytobenthos to light: primary production and carbohydrate allocation over an emersion period. Mar Ecol Prog Ser 223:101–112CrossRefGoogle Scholar
  86. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signalling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234PubMedCrossRefPubMedCentralGoogle Scholar
  87. Pierre G, Graber M, Orvain F, Dupuy C, Maugard T (2010) Biochemical characterization of extracellular polymeric substances extracted from an intertidal mudflat using a cation exchange resin. Biochem Syst Ecol 38:917–923CrossRefGoogle Scholar
  88. Pohnert G, Boland W (1996) Biosynthesis of the algal pheromone hormosirene by the fresh-water diatom Gomphonema parvulum (Bacillariophyceae). Tetrahedron 52:10073–10082CrossRefGoogle Scholar
  89. Pompanon F, Samadi S (2015) Next generation sequencing for characterizing biodiversity: promises and challenges. Genetica 143:133–138PubMedCrossRefPubMedCentralGoogle Scholar
  90. Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805PubMedPubMedCentralGoogle Scholar
  91. Poulsen NC, Spector I, Spurck TP, Schultz TF, Wetherbee R (1999) Diatom gliding is the result of an actin-myosin motility system. Cell Motil Cytoskeleton 44:23–33PubMedCrossRefPubMedCentralGoogle Scholar
  92. Riding R (2011) The nature of stromatolites: 3,500 million years of history and a century of research. Springer, Berlin, pp 29–74Google Scholar
  93. Riemann F, Helmke E (2002) Symbiotic relations of sediment-agglutinating nematodes and bacteria in detrital habitats: the enzyme-sharing concept. Mar Ecol 23:93–113CrossRefGoogle Scholar
  94. Rolland JL, Stien D, Sanchez-Ferandin S, Lami R (2016) Quorum sensing and quorum quenching in the phycosphere of phytoplankton: a case of chemical interactions in ecology. J Chem Ecol 42:1201–1211PubMedCrossRefPubMedCentralGoogle Scholar
  95. Rossello-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Ecol 25:39–67CrossRefGoogle Scholar
  96. Round FE (1981) The ecology of algae. Cambridge University Press, Cambridge, 653 ppGoogle Scholar
  97. Round FE, Crawford RM, Mann DG (1990) The diatoms: biology & morphology of the genera. Cambridge University PressGoogle Scholar
  98. Sanders RW (1991) Mixotrophic protists in marine and freshwater ecosystems. J Protozool 38:76–81CrossRefGoogle Scholar
  99. Sapp M, Schwaderer AS, Wiltshire KH, Hoppe H-G, Gerdts G, Wichels A (2007) Species-specific bacterial communities in the phycosphere of microalgae? Microb Ecol 53:683–699PubMedCrossRefPubMedCentralGoogle Scholar
  100. Sato S, Beakes G, Idei M, Nagumo T, Mann DG, Anderson O (2011) Novel sex cells and evidence for sex pheromones in diatoms. PLoS One 6:e26923PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sauer K, Rickard AH, Davies DG (2007) Biofilms and biocomplexity. Microbe 2:347–353Google Scholar
  102. Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, Peres CM, Schmidt S, Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599PubMedCrossRefPubMedCentralGoogle Scholar
  103. Schäfer H, Abbas B, Witte H, Muyzer G (2002) Genetic diversity of “satellite” bacteria present in cultures of marine diatoms. FEMS Microbiol Ecol 42:25–35PubMedPubMedCentralGoogle Scholar
  104. Serôdio J, Marques da Silva J, Catarino F (1997) Non-destructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence. J Phycol 33:542–553CrossRefGoogle Scholar
  105. Shih PM (2015) Cyanobacterial evolution: fresh insight into ancient questions. Curr Biol 25:R192–R193PubMedCrossRefPubMedCentralGoogle Scholar
  106. Smith DJ, Underwood GJC (1998) Exopolymer production by intertidal epipelic diatoms. Limnol Oceanogr 43:1578–1591CrossRefGoogle Scholar
  107. Smith DJ, Underwood GMC (2000) The production of extracellular carbohydrates by estuarine benthic diatoms: the effects of growth phase and light and dark treatment. J Phycol 36:321–333CrossRefGoogle Scholar
  108. Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96–104PubMedCrossRefPubMedCentralGoogle Scholar
  109. Staats N, Stal L, de Winder B, Mur L (2000) Oxygenic photosynthesis as driving process in exopolysaccharide production of benthic diatoms. Mar Ecol Prog Ser 193:261–269CrossRefGoogle Scholar
  110. Stal LJ (2003) Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol J 20:463–478CrossRefGoogle Scholar
  111. Stal LJ (2010) Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization. Ecol Eng 36:236–245CrossRefGoogle Scholar
  112. Stal LJ (2015) Nitrogen fixation in cyanobacteria. In: eLS encylopedia of life science. Wiley, Chichester, pp 1–9Google Scholar
  113. Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9PubMedCrossRefPubMedCentralGoogle Scholar
  114. Sutherland TF, Grant J, Amos CL (1998) The effect of carbohydrate production by the diatom Nitzschia curvilineata on the erodibility of sediment. Limnol Oceanogr 43:65–72CrossRefGoogle Scholar
  115. Syrpas M, Ruysbergh E, Blommaert L, Vanelslander B, Sabbe K, Vyverman W, De Kimpe N, Mangelinckx S (2014) Haloperoxidase mediated quorum quenching by Nitzschia cf pellucida: study of the metabolization of N-acyl homoserine lactones by a benthic diatom. Mar Drugs 12:352–367PubMedPubMedCentralCrossRefGoogle Scholar
  116. Takahashi E, Ledauphin J, Goux D, Orvain F (2009) Optimising extraction of extracellular polymeric substances (EPS) from benthic diatoms: comparison of the efficiency of six EPS extraction methods. Mar Freshw Res 60:1201CrossRefGoogle Scholar
  117. Taylor IS, Paterson DM, Mehlert A (1999) The quantitative variability and monosaccharide composition of sediment carbohydrates associated with intertidal diatom assemblages. Biogeochemistry 45(3):303–327Google Scholar
  118. Taylor JD, Mckew BA, Kuhl A, McGenity TJ, Underwood GJC (2013) Microphytobenthic extracellular polymeric substances (EPS) in intertidal sediments fuel both generalist and specialist EPS-degrading bacteria. Limnol Oceanogr 58:1463–1480CrossRefGoogle Scholar
  119. Underwood GJC, Paterson DM (2003) The importance of extracellular carbohydrate production by marine epipelic diatoms. Adv Bot Res 40:183–240CrossRefGoogle Scholar
  120. Underwood GJC, Boulcott M, Raines CA, Waldron K (2004) Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition, and pathways of production. J Phycol 40:293–304CrossRefGoogle Scholar
  121. van Duyl FC, de Winder B, Kop AJ, Wollenzien U (1999) Tidal coupling between carbohydrate concentrations and bacterial activities in diatom-inhabited intertidal mudflats. Mar Ecol Prog Ser 191:19–32CrossRefGoogle Scholar
  122. van Duyl FC, de Winder B, Kop AJ, Wollenzien U (2000) Consequences of diatom mat erosion for carbohydrate concentrations and heterotrophic bacterial activities in intertidal sediments of the Ems-Dollard estuary. Cont Shelf Res 20:1335–1349CrossRefGoogle Scholar
  123. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefPubMedCentralGoogle Scholar
  124. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487–1487PubMedCrossRefPubMedCentralGoogle Scholar
  125. Whitton BA (1992) Diversity, ecology, and taxonomy of the cyanobacteria. In: Prokaryotes P (ed) Biotechnology handbooks 6. Springer, Boston, MA, pp 1–51Google Scholar
  126. Worm B, Duffy JE (2003) Biodiversity, productivity and stability in real food webs. Trends Ecol Evol 18:628–632CrossRefGoogle Scholar
  127. Wotton RS (2004a) The ubiquity and many roles of exopolymers (EPS) in aquatic systems. Sci Mar 68:13–21CrossRefGoogle Scholar
  128. Wotton RS (2004b) The essential role of exopolymers (EPS) in aquatic systems. Oceanogr Mar Biol 42:57–94CrossRefGoogle Scholar
  129. Yallop ML, de Winder B, Paterson DM, Stal LJ (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar Coast Shelf Sci 39:565–582CrossRefGoogle Scholar
  130. Ziegler M, Uthicke S (2011) Photosynthetic plasticity of endosymbionts in larger benthic coral reef Foraminifera. J Exp Mar Biol Ecol 407:70–80CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Cédric Hubas
    • 1
    Email author
  • Claire Passarelli
    • 2
  • David M. Paterson
    • 3
  1. 1.Muséum National d’Histoire Naturelle, UMR BOREA, MNHN-CNRS-UCN-UPMC-IRD-UA, Station Marine de ConcarneauConcarneauFrance
  2. 2.School of Biological SciencesUniversity of EssexColchesterUK
  3. 3.Sediment Ecology Research Group, Scottish Oceans Institute, School of BiologyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations