Advertisement

LIFT: Learning Fault Trees from Observational Data

  • Meike Nauta
  • Doina Bucur
  • Mariëlle Stoelinga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11024)

Abstract

Industries with safety-critical systems increasingly collect data on events occurring at the level of system components, thus capturing instances of system failure or malfunction. With data availability, it becomes possible to automatically learn a model describing the failure modes of the system, i.e., how the states of individual components combine to cause a system failure. We present LIFT, a machine learning method for static fault trees directly out of observational datasets. The fault trees model probabilistic causal chains of events ending in a global system failure. Our method makes use of the Mantel-Haenszel statistical test to narrow down possible causal relationships between events. We evaluate LIFT with synthetic case studies, show how its performance varies with the quality of the data, and discuss practical variants of LIFT.

Notes

Acknowledgements

This research was supported by the Dutch STW project SEQUOIA (grant 15474). The authors would like to thank Joost-Pieter Katoen and Djoerd Hiemstra for valuable feedback.

References

  1. 1.
    Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Murthy, S.K.: Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min. Knowl. Discov. 2(4), 345–389 (1998)CrossRefGoogle Scholar
  3. 3.
    Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Education (2006)Google Scholar
  4. 4.
    Li, J., Ma, S., Le, T., Liu, L., Liu, J.: Causal decision trees. IEEE Trans. Knowl. Data Eng. 29(2), 257–271 (2017)CrossRefGoogle Scholar
  5. 5.
    Mantel, N., Haenszel, W.: Statistical aspects of the analysis of data from retrospective studies of disease. J. Nat. Cancer Inst. 22(4), 719–748 (1959)Google Scholar
  6. 6.
    Kabir, S.: An overview of fault tree analysis and its application in model based dependability analysis. Expert Syst. Appl. 77, 114–135 (2017)CrossRefGoogle Scholar
  7. 7.
    Aizpurua, J.I., Muxika, E.: Model-based design of dependable systems: limitations and evolution of analysis and verification approaches. Int. J. Adv. Secur. 6(1–2), 12–31 (2013)Google Scholar
  8. 8.
    Sharvia, S., Kabir, S., Walker, M., Papadopoulos, Y.: Model-based dependability analysis: state-of-the-art, challenges, and future outlook. In: Software Quality Assurance, pp. 251–278. Elsevier (2016)Google Scholar
  9. 9.
    Madden, M.G., Nolan, P.J.: Generation of fault trees from simulated incipient fault case data. WIT Trans. Inf. Commun. Technol. 6, 568–569 (1994)Google Scholar
  10. 10.
    Papadopoulos, Y., McDermid, J.: Safety-directed system monitoring using safety cases. Ph.D. thesis, University of York (2000)Google Scholar
  11. 11.
    Li, S., Li, X.: Study on generation of fault trees from Altarica models. Procedia Eng. 80, 140–152 (2014)CrossRefGoogle Scholar
  12. 12.
    Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA safety analysis platform. Int. J. Softw. Tools Technol. Transf. 9(1), 5 (2007)CrossRefGoogle Scholar
  13. 13.
    Li, Y., Zhu, Y., Ma, C., Xu, M.: A method for constructing fault trees from AADL models. In: Calero, J.M.A., Yang, L.T., Mármol, F.G., García Villalba, L.J., Li, A.X., Wang, Y. (eds.) ATC 2011. LNCS, vol. 6906, pp. 243–258. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23496-5_18CrossRefGoogle Scholar
  14. 14.
    Leitner-Fischer, F., Leue, S.: Probabilistic fault tree synthesis using causality computation. Int. J. Crit. Comput.-Based Syst. 4(2), 119–143 (2013)CrossRefGoogle Scholar
  15. 15.
    Li, J., Shi, J.: Knowledge discovery from observational data for process control using causal Bayesian networks. IIE Trans. 39(6), 681–690 (2007)CrossRefGoogle Scholar
  16. 16.
    Jha, S., Raman, V., Pinto, A., Sahai, T., Francis, M.: On learning sparse Boolean formulae for explaining AI decisions. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 99–114. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57288-8_7CrossRefGoogle Scholar
  17. 17.
    Chickering, D.M., Heckerman, D., Meek, C.: Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res. 5, 1287–1330 (2004)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kleinberg, S.: Why: A Guide to Finding and Using Causes. O’Reilly (2015)Google Scholar
  19. 19.
    Birch, M.: The detection of partial association, I: the 2 \(\times \) 2 case. J. Royal Stat. Soc. Ser. B (Methodological) 26, 313–324 (1964)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Kearns, M., Li, M., Valiant, L.: Learning Boolean formulas. J. ACM (JACM) 41(6), 1298–1328 (1994)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)Google Scholar
  22. 22.
    Rohrer, J.M.: Thinking clearly about correlations and causation: graphical causal models for observational data (2017)Google Scholar
  23. 23.
    Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of TwenteEnschedeThe Netherlands

Personalised recommendations