Skip to main content

Model Checking for Safe Navigation Among Humans

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11024))

Included in the following conference series:

Abstract

We investigate the use of probabilistic model checking to synthesise optimal strategies for autonomous systems that operate among uncontrollable agents such as humans. To formally assess such uncontrollable behaviour, we use models obtained from reinforcement learning. These behaviour models are, e.g., based on data collected in experiments in which humans execute dynamic tasks in a virtual environment. We first describe a method to translate such behaviour models into Markov decision processes (MDPs). The composition of these MDPs with models for (controllable) autonomous systems gives rise to stochastic games (SGs). MDPs and SGs are amenable to probabilistic model checking which enables the synthesis of strategies that provably adhere to formal specifications such as probabilistic temporal logic constraints. Experiments with a prototype provide (1) systematic insights on the credibility and the characteristics of behavioural models and (2) methods for automated synthesis of strategies satisfying guarantees on their required characteristics in the presence of humans.

Supported by the CDZ project CAP (GZ 1023), the DFG RTG 2236 “UnRAVeL”, and the NSF grants 1652113, 1651089, and 1550212.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the term movements to clarify the distinction from actions in MDPs.

  2. 2.

    Available at https://github.com/moves-rwth/human_factor_models.

References

  1. Brafman, R.I., Tennenholtz, M.: On partially controlled multi-agent systems. J. Artif. Intell. Res. 4, 477–507 (1996)

    Article  MathSciNet  Google Scholar 

  2. Dresner, K., Stone, P.: A multiagent approach to autonomous intersection management. J. Artif. Intell. Res. 31, 591–656 (2008)

    Article  Google Scholar 

  3. Wellman, M.P., Wurman, P.R., O’Malley, K., Bangera, R., Reeves, D., Walsh, W.E.: Designing the market game for a trading agent competition. IEEE Internet Comput. 5(2), 43–51 (2001)

    Article  Google Scholar 

  4. Khandelwal, P., et al.: Bwibots: a platform for bridging the gap between AI and human-robot interaction research. Int. J. Robot. Res. 36, 635–659 (2017)

    Article  Google Scholar 

  5. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)

    Book  Google Scholar 

  6. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  7. Kwiatkowska, M.Z.: Model checking for probability and time: from theory to practice. In: LICS, p. 351. IEEE Computer Society (2003)

    Google Scholar 

  8. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  9. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A STORM is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31

  10. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6(5), 512–535 (1994)

    Article  Google Scholar 

  11. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224 (1992)

    Article  MathSciNet  Google Scholar 

  12. Kwiatkowska, M., Parker, D., Wiltsche, C.: PRISM-Games 2.0: a tool for multi-objective strategy synthesis for stochastic games. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 560–566. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_35

    Chapter  Google Scholar 

  13. Dean, T.L., Givan, R.: Model minimization in Markov decision processes. In: AAAI/IAAI, pp. 106–111. AAAI Press/The MIT Press (1997)

    Google Scholar 

  14. Tong, M.H., Zohar, O., Hayhoe, M.M.: Control of gaze while walking: task structure, reward, and uncertainty. J. Vis. 17(1), 28 (2017)

    Article  Google Scholar 

  15. Rothkopf, C.A., Ballard, D.H.: Modular inverse reinforcement learning for visuomotor behaviour. Biol. Cybern. 107(4), 477–490 (2013)

    Article  Google Scholar 

  16. Sprague, N., Ballard, D.: Multiple-goal reinforcement learning with modular sarsa (0). IJCA I, 1445–1447 (2003)

    Google Scholar 

  17. Ballard, D.H., Kit, D., Rothkopf, C.A., Sullivan, B.: A hierarchical modular architecture for embodied cognition. Multisens. Res. 26(1–2), 177–204 (2013)

    Article  Google Scholar 

  18. Leong, Y.C., Radulescu, A., Daniel, R., DeWoskin, V., Niv, Y.: Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron 93(2), 451–463 (2017)

    Article  Google Scholar 

  19. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilistic model checking. Robot. Auton. Syst. 60(2), 199–213 (2012)

    Article  Google Scholar 

  20. Johnson, B., Kress-Gazit, H.: Analyzing and revising synthesized controllers for robots with sensing and actuation errors. Int. J. Robot. Res. 34(6), 816–832 (2015)

    Article  Google Scholar 

  21. Giaquinta, R., Hoffmann, R., Ireland, M., Miller, A., Norman, G.: Strategy synthesis for autonomous agents using PRISM. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 220–236. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5_16

    Chapter  Google Scholar 

  22. Chen, T., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: Synthesis for multi-objective stochastic games: an application to autonomous urban driving. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 322–337. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1_28

    Chapter  Google Scholar 

  23. Feng, L., Wiltsche, C., Humphrey, L., Topcu, U.: Synthesis of human-in-the-loop control protocols for autonomous systems. IEEE Trans. Autom. Sci. Eng. 13(2), 450–462 (2016)

    Article  Google Scholar 

  24. Lacerda, B., Parker, D., Hawes, N.: Optimal policy generation for partially satisfiable co-safe LTL specifications. In: IJCAI, pp. 1587–1593. AAAI Press (2015)

    Google Scholar 

  25. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. ICML 157, 157–163 (1994)

    Google Scholar 

  26. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Artif. Intell. 136(2), 215–250 (2002)

    Article  MathSciNet  Google Scholar 

  27. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Modelling and analyzing adaptive self-assembly strategies with maude. In: Durán, F. (ed.) WRLA 2012. LNCS, vol. 7571, pp. 118–138. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34005-5_7

    Chapter  Google Scholar 

  28. Katoen, J.P.: The probabilistic model checking landscape. In: LICS, pp. 31–45. ACM (2016)

    Google Scholar 

  29. Garcıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning. J. Mach. Learn. Res. 16(1), 1437–1480 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Sculley, D., Phillips, T., Ebner, D., Chaudhary, V., Young, M.: Machine learning: the high-interest credit card of technical debt (2014)

    Google Scholar 

  31. Winterer, L., et al.: Motion planning under partial observability using game-based abstraction. In: CDC, pp. 2201–2208. IEEE (2017)

    Google Scholar 

  32. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective model checking of Markov decision processes. Log. Methods Comput. Sci. 4(4), 1–21 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Comput. Simul. 28(1), 6:1–6:39 (2018)

    Article  MathSciNet  Google Scholar 

  34. Wachter, B., Zhang, L., Hermanns, H.: Probabilistic model checking modulo theories. In: QEST, pp. 129–140. IEEE CS (2007)

    Google Scholar 

  35. Brázdil, T., et al.: Verification of Markov decision processes using learning algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Jansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Junges, S., Jansen, N., Katoen, JP., Topcu, U., Zhang, R., Hayhoe, M. (2018). Model Checking for Safe Navigation Among Humans. In: McIver, A., Horvath, A. (eds) Quantitative Evaluation of Systems. QEST 2018. Lecture Notes in Computer Science(), vol 11024. Springer, Cham. https://doi.org/10.1007/978-3-319-99154-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99154-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99153-5

  • Online ISBN: 978-3-319-99154-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics