Skip to main content

On Optimization Problems in Urban Transport

  • Chapter
  • First Online:
Open Problems in Optimization and Data Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 141))

Abstract

This chapter reviews some urban transport problems that are vital in developing countries. These problems are formulated as optimization programs. They are usually nonlinear, discrete, bi-level, and multi-objective. Finding an efficient solution method for each problem is still a challenge. Besides, the reformulation of existing mathematical models in a solvable form is also an open question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almond, J., Lott, R.S.: The Glasgow experiment: implementation and assessment. Road Research Laboratory Report 142, Road Research Laboratory, Crowthorne (1968)

    Google Scholar 

  2. Avishai, C.: Urban transit scheduling: framework, review and examples. J. Urban Plann. Dev. 128(4), 225–243 (2002)

    Article  Google Scholar 

  3. Bai, Z.J., He, G.G., Zhao, S.Z.: Design and implementation of Tabu search algorithm for optimizing BRT Vehicles dispatch. Comput. Eng. Appl. 43(23), 229–232 (2007)

    Google Scholar 

  4. Ben Ayed, O., Boyce, D.E., Blair, C.E. III: A general bi-level linear programming formulation of the network design problem. Transp. Res. B 22(4), 311–318 (1988)

    Article  Google Scholar 

  5. Ceylan, H., Bell, M.G.H.: Traffic signal timing optimisation based on genetic algorithm approach, including drivers’ routing. Transp. Res. B 38(4), 329–342 (2004)

    Article  Google Scholar 

  6. Costantin, I., Florian, M.: Optimizing frequency in transit network: a nonlinear bi-level programming approach. Int. Trans. Oper. Res. 2(2), 149–164 (1995)

    Article  Google Scholar 

  7. Cree, N.D., Maher, M.J., Paechter, B.: The continuous equilibrium optimal network design problem: a genetic approach. In: Bell, M.G.H. (ed.) Transportation Networks: Recent Methodological Advances, pp.163–174. Pergamon, Oxford (1998)

    Google Scholar 

  8. Dai, L.G., Liu, Z.D.: Research on the multi-objective assembled optimal model of departing interval on bus dispatch. J. Transp. Syst. Eng. Inf. Technol. 7(4), 43–46 (2007)

    Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  10. Fan, Q.S., Pan, W.: Application research of genetic algorithm in intelligent transport systems scheduling of vehicle. Comput. Digit. Eng. 35(5), 34–35 (2007)

    Google Scholar 

  11. Fitsum, T., Agachai, S.: A genetic algorithm approach for optimizing traffic control signals considering routing. Comput. Aided Civ. Inf. Eng. 22, 31–43 (2007)

    Article  Google Scholar 

  12. Friesz, T.L., Tobin, R.L., Cho, H.J., Mehta, N.J.: Sensitivity analysis based heuristic algorithms for mathematical programs with variational inequality constraints. Math. Program. 48, 265–284 (1990)

    Article  MathSciNet  Google Scholar 

  13. Friesz, T.L., Cho, H.J., Mehta, N.J., Tobin, R., Anandalingam, G.: A simulated annealing approach to the network design problem with variational inequality constraints. Transp. Sci. 26, 18–26 (1992)

    Article  Google Scholar 

  14. Gao, Z., Sun, H., Shan, L.L.: A continuous equilibrium network design model and algorithm for transit systems. Transp. Res. B 38(3), 235–250 (2004)

    Article  Google Scholar 

  15. Han, A.F., Wilson, N.M.: The allocation of buses in heavily utilized networks with overlapping routes. Transp. Res. B 13(3), 221–232 (1982)

    Article  Google Scholar 

  16. Hector, M., Antonio, M., Maria, E.U.: Frequency optimization in public transportation systems: formulation and methaheuristic approach. Eur. J. Oper. Res. 236, 27–36 (2014)

    Article  Google Scholar 

  17. Hector, M., Antonio, M., Maria, E.U.: Mathematical programming formulations for transit network design. Transp. Res. B: Methodol. 77, 17–37 (2015)

    Article  Google Scholar 

  18. Hunt, P.B., Robertson, D.I., Bretherton, R.D., Winton, R.I.: SCOOT-A traffic responsive method of coordinating signals, TRRL Laboratory Report 1014, TRRL, Berkshire, England (1981)

    Google Scholar 

  19. Kurauchi F., Bell M.G.H, Schmoecker, J.-D.: Capacity constrained transit assignment with common lines. J. Math. Model. Algorithms 2, 309–327 (2003)

    Article  MathSciNet  Google Scholar 

  20. Lawphongpanich, S., Hearn, D.W.: An MPEC approach to second-best toll pricing. Math. Program. B 101(1), 33–55 (2004)

    Article  MathSciNet  Google Scholar 

  21. LeBlanc, L., Boyce, D.: A bi-level programming for exact solution of the network design problem with user-optimal flows. Transp. Res. B Methodol. 20, 259–265 (1986)

    Article  Google Scholar 

  22. Le Thi, H.A.: Contribution à l’optimisation non-convex and l’optimisation globale: théorie, algorithmes et applications. Habilitation à Diriger des recherches, Université de Rouen (1997)

    Google Scholar 

  23. Le Thi, H.A., Pham Dinh, T.: A branch and bound method via d.c. optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems. J. Glob. Optim. 13, 171–206 (1998)

    Google Scholar 

  24. Le Thi, H.A., Pham Dinh, T.: A continuous approach for globally solving linearly constrained quadratic zero-one programming problem. Optimization 50(1–2) , 93–120 (2001)

    Article  MathSciNet  Google Scholar 

  25. Le Thi, H.A., Pham Dinh, T.: The DC(difference of convex functions) Programming and DCA revisited with DC models of real world non-convex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)

    Article  MathSciNet  Google Scholar 

  26. Le Thi, H.A., Pham Dinh, T., Huynh, V.N.: Exact penalty and error bounds in DC programming. J. Glob. Optim. 52(3), 509–535 (2012)

    Article  MathSciNet  Google Scholar 

  27. Levinson, H., Zimmerman, S., Clinger, J., Rutherford, S., Smith, R.L., Cracknell, J., Soberman, R.: Bus rapid transit, volume 1: case studies in bus rapid transit, TCRP Report 90, Transportation Research Board, Washington (2003)

    Google Scholar 

  28. Liang, S., He, Z., Sha, Z.: Bus rapid transit scheduling optimal model based on genetic algorithm. In: 11th International Conference of Chinese Transportation Professionals (ICCTP), pp. 1296–1305 (2011)

    Google Scholar 

  29. Luenberger, D.G.: Linear and Nonlinear Programming, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  30. Luo, Z., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, New York (1996)

    Book  Google Scholar 

  31. Meng, Q., Yang, H., Bell, M.G.H.: An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem. Transp. Res. B 35(1), 83–105 (2001)

    Article  Google Scholar 

  32. Miller, M.A., Yin, Y., Balvanyos, T., Avishai, C.: Framework for bus rapid transit development and deployment planning. Research report, California PATH, University of California Berkeley (2004)

    Google Scholar 

  33. Nguyen, S., Pallotino, S.: Equilibrium assignment for large scale transit network. Eur. J. Oper. Res. 37, 176–186 (1988)

    Article  MathSciNet  Google Scholar 

  34. Nguyen, Q.T., Phan, N.B.T.: Scheduling Problem for Bus Rapid Transit Routes. Advances in Intelligent Systems and Computing, vol. 358, pp. 69–79. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  35. Nguyen, N.D., Nguyen, Q.T., Vu, T.H., Nguyen, T.H.: Optimizing the bus network configuration in Danang city. Adv. Ind. Appl. Math. ISBN 978-604-80-0608-2 (2014)

    Google Scholar 

  36. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to d.c programming: theory, algorithms and applications. Acta Math. Vietnam. 22(1), 289–355 (1997), dedicated to Professor Hoang Tuy on the occasion of his 70th birthday

    Google Scholar 

  37. Pham Dinh, T., Le Thi, H.A.: DC optimization algorithms for solving the trust region subproblem. SIAM J. Optim. 8, 476–505 (1998)

    Article  MathSciNet  Google Scholar 

  38. Ren, C.X., Zhang, H., Fan, Y.Z.: Optimizing dispatching of public transit vehicles using genetic simulated annealing algorithm. J. Syst. Simul. 17(9), 2075–2077 (2005)

    Google Scholar 

  39. Rickert, T.: Technical and operational challenges to inclusive bus rapid transit: a guide for practitioners. World Bank, Washington (2010)

    Google Scholar 

  40. Robertson, D.I.: ‘TRANSYT’ method for area traffic control. Traffic Eng. Control 10, 276–281 (1969)

    Google Scholar 

  41. Schaefer, R.: Foundations of Global Genetic Optimization. Studies in Computational Intelligence, vol. 74. Springer, Berlin (2007)

    Book  Google Scholar 

  42. Shepherd, S.P.: A Review of Traffic Signal Control, Monograph, Publisher University of Leeds, Institute for Transport Studies (1992)

    Google Scholar 

  43. Shimamoto, H., Schmöcker, J.-D., Kurauchi F., Optimisation of a bus network configuration and frequency considering the common lines problem. J. Transp. Technol. 2, 220–229 (2012)

    Article  Google Scholar 

  44. Shrivastava, P., Dhingra, S.L.: Development of coordinated schedules using genetic algorithms. J. Transp. Eng. 128(1), 89–96 (2002)

    Article  Google Scholar 

  45. Sun, C., Zhou, W., Wang, Y.: Scheduling combination and headway optimization of bus rapid transit. J. Transp. Syst. Eng. Inf. Technol. 8(5), 61–67 (2008)

    Google Scholar 

  46. Suwansirikul, C., Friesz, T.L., Tobin, R.L.: Equilibrium decomposed optimization: a heuristic for the continuous equilibrium network design problem. Transp. Sci. 21(4), 254–263 (1987)

    Article  Google Scholar 

  47. Tong, G.: Application study of genetic algorithm on bus scheduling. Comput. Eng. 31(13), 29–31 (2005)

    Google Scholar 

  48. Tran, D.Q., Phan, N.B.T., Nguyen, Q.T.A.: New Approach for Optimizing Traffic Signals in Networks Considering Rerouting. Advances in Intelligent Systems and Computing, vol. 359, pp. 143–154. Springer, Heidelberg (2015)

    Google Scholar 

  49. Van Vliet, D.: SATURN-A modern assignment model. Traffic Eng. Control 23, 578–581 (1982)

    Google Scholar 

  50. Verhoef, E.T.: Second-best congestion pricing in general networks: heuristic algorithms for finding second-best optimal toll levels and toll points. Transp. Res. B 36(8), 707–729 (2002)

    Article  Google Scholar 

  51. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civil Eng. 1(2), 325–378 (1952)

    Google Scholar 

  52. Webster, F.V.: Traffic Signal Settings, Road Research Technical Paper No. 39, HMSO, London (1958)

    Google Scholar 

  53. Wu, X., Deng, S., Du, X.: Jing MaGreen-Wave traffic theory optimization and analysis. World J. Eng. Technol. 2, 14–19 (2014)

    Article  Google Scholar 

  54. Yang, H.: Sensitivity analysis for the elastic-demand network equilibrium problem with applications. Transp. Res. B 31(1), 55–70 (1997)

    Article  Google Scholar 

  55. Yu, B., Yang, Z., Yao, J.: Genetic algorithm for bus frequency optimization. J. Transp. Eng. 136(6), 576–583 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.01-2013.10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Quang Thuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quynh, T.D., Thuan, N.Q. (2018). On Optimization Problems in Urban Transport. In: Pardalos, P., Migdalas, A. (eds) Open Problems in Optimization and Data Analysis. Springer Optimization and Its Applications, vol 141. Springer, Cham. https://doi.org/10.1007/978-3-319-99142-9_9

Download citation

Publish with us

Policies and ethics