Abstract
In this note, we review some open problems and challenges concerning optimization theory and the algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, N., Gonen, A.: Effective dimension of exp-concave optimization (2018). https://arxiv.org/abs/1805.08268
Ahmadi, A.A., Olshevsky, A., Parrilo, P.A., Tsitsiklis, J.N.: NP-hardness of deciding convexity of quartic polynomials and related problems. Math. Program. 137, 453–476 (2013)
Alabert, A., Berti, A., Caballero, R., Ferrante, M.: No-free-lunch theorem in continuum. Theor. Comput. Sci. 600, 98–106 (2015)
Allen-Zhu1, Z., Liao, Z., Yuan, Y.: Optimization algorithms for faster computational geometry. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), Article No. 53, pp. 53:1–53:6. (2016)
Andreatt, M., Bezdek, A., Boronski, J.P.: The problem of Malfatti: two centuries of debate. Math. Intell. 33, 72–76 (2011)
Battiti, R., Brunato, R., Mascia, F.: Reactive Search and Intelligent Optimization. Operations Research/Computer Science Interfaces Series. Springer, Berlin (2009)
Bennet, C.H., Landauer, R.: The fundamental physical limits of computation. Sci. Am. 253, 48–56 (2014)
Bezdek, K., Deza, A., Ye, Y.: Selected open problems in discrete geometry and optimization. In: Bezdek, K., et al. (eds.) Discrete Geometry and Optimization, pp. 321–336. Springer, Berlin (2013)
Cantor, M.: Vorlesungen über Geschichte der Matematik, Band 1. B.G. Teubner, Leipzig (1880)
D’Apuzzo, M., Marino, M., Migdalas, A., Pardalos, P.M., Toraldo, G.: Parallel computing in global optimization. In: Kontoghiorghes, E.J. (ed.) Handbook of Parallel Computing and Statistics, pp. 225–258. Chapman and Hall, Boca Raton (2006)
Euclid’s Elements of Geometry (Edited, and provided with a modern English translation, by Richard Fitzpatrick). http://farside.ph.utexas.edu/Books/Euclid/Elements.pdf
Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, 2nd edn. Springer, Berlin (2009)
Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126, 43–62 (2001)
Hedetniemi, S.: Open problems in combinatorial optimization (1998). https://people.cs.clemson.edu/~hedet/preface.html
Hiriart-Urruty, J.-B.: Potpourri of conjectures and open questions in nonlinear analysis and optimization. SIAM Rev. 49, 255–273 (2007)
Hiriart-Urruty, J.-B.: When only global optimization matters. J. Glob. Optim. 56, 761–763 (2013)
Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Nonconvex Optimization and Its Applications, vol. 3. Springer, Berlin (2000)
Joyce, T., Herrmann, J.M.: A review of no free lunch theorems, and their implications for metaheuristic optimisation. In: Yang, X.-S. (ed.) Nature-Inspired Algorithms and Applied Optimization. Studies in Computational Intelligence, vol. 744, pp. 27–51. Springer, Berlin (2018)
Kore, T.: Open problem: fast stochastic exp-concave optimization. In: JMLR: Workshop and Conference Proceedings, vol. 30, pp. 1–3 (2013)
Markov, I.L.: Limits on fundamental limits to computation. Nature 512, 147–154 (2014)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Series on Information and Natural Sciences. Cambridge University Press, Cambridge (2000)
Pardalos, P.M., Rebennack, S.: Computational challenges with cliques, quasi-cliques and clique partitions in graphs. In: Festa, P. (ed.) International Symposium on Experimental Algorithms, SEA 2010: Experimental Algorithms. Lecture Notes in Computer Science, vol. 6049, pp. 13–22. Springer, Berlin (2010)
Pardalos, P.M., Vavasis, S.A.: Open questions in complexity theory for numerical optimization. Math. Programm. 57, 337–339 (1992)
Serafino, L.: Optimizing without derivatives: what does the no free lunch theorem actually says? Not. AMS 61, 750–755 (2014)
Werner, J.: Optimization Theory and Applications. Vieweg Advanced Lectures in Mathematics. Friedr. Vieweg & Son, Braunschweig (1984)
West, D.B.: Open problems - graph theory and combinatorics (2018). https://faculty.math.illinois.edu/~west/openp/
Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2010)
Woeginge, G.J.: Open problems around exact algorithms. Discrete Appl. Math. 156, 397–405 (2008)
Yang, X.-S.: Metaheuristic Optimization: Algorithm Analysis and Open Problems. In: Pardalos, P.M., Rebennack, S. (eds.) Experimental Algorithms. SEA 2011. Lecture Notes in Computer Science, vol. 6630. Springer, Berlin (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Migdalas, A., Pardalos, P.M. (2018). A Note on Open Problems and Challenges in Optimization Theory and Algorithms. In: Pardalos, P., Migdalas, A. (eds) Open Problems in Optimization and Data Analysis. Springer Optimization and Its Applications, vol 141. Springer, Cham. https://doi.org/10.1007/978-3-319-99142-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-99142-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99141-2
Online ISBN: 978-3-319-99142-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)