Skip to main content

Speeding up MILP Aided Differential Characteristic Search with Matsui’s Strategy

  • Conference paper
  • First Online:
Information Security (ISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11060))

Included in the following conference series:

Abstract

Being the first generic algorithm for finding the best differential and linear characteristics, Matsui’s branch and bound search algorithm (EUROCRYPT 1994) and its variants have played an important role in the security analysis of symmetric-key primitives. However, Matsui’s algorithm is difficult to implement, optimize, and be applied to different ciphers with reusable code. Another approach getting popular in recent years is to encode the search problem as a Mixed Integer Linear Programming (MILP) model which can be solved by open-source or commercially available optimizers. In this work, we show how to tweak the objective functions of the MILP models for finding differential characteristics such that a set of constraints derived from the bounding condition of Matsui’s algorithm can be incorporated into the models. We apply the new modeling strategy to PRESENT (S-box based SPN design), SIMON (Feistel structure), and SPECK (ARX construction). For PRESENT, the resolution time is significantly reduced. For example, the time to prove that the exact lower bound of the probabilities of the differential characteristics for 7-round PRESENT is reduced from 48638 s to 656 s. For SIMON, obvious acceleration is also observed, and for the ARX cipher SPECK, the new model is unable to speed up the resolution. In the future, it is interesting to investigate how to integrate other search heuristics proposed in the literature of symmetric-key cryptanalysis into the MILP models, and how to accelerate the resolution of MILP models for finding characteristics of ARX ciphers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gurobi Optimization. Gurobi Optimizer Reference Manual (2013)

    Google Scholar 

  2. Abdelkhalek, A., Sasaki, Y., Tolba, M., Youssef, A.M.: MILP modeling for (large) S-boxes to optimize probability of differential characteristics. IACR Trans. Symmetric Cryptol. 2017(4), 99–129 (2017)

    Google Scholar 

  3. Aoki, K., Kobayashi, K., Moriai, S.: Best differential characteristic search of FEAL. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 41–53. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052333

    Chapter  Google Scholar 

  4. Aumasson, J.-P., Jovanovic, P., Neves, S.: Analysis of NORX: investigating differential and rotational properties. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 306–324. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16295-9_17

    Chapter  Google Scholar 

  5. Bannier, A., Nicolas, B., Eric, F.: Automatic search for a maximum probability differential characteristic in a substitution-permutation network. In: 48th Hawaii International Conference on System Sciences, HICSS 2015, Kauai, Hawaii, USA, January 5–8, 2015, pp. 5165–5174 (2015)

    Google Scholar 

  6. Bao, Z., Zhang, W., Lin, D.: Speeding up the search algorithm for the best differential and best linear trails. In: Lin, D., Yung, M., Zhou, J. (eds.) Inscrypt 2014. LNCS, vol. 8957, pp. 259–285. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16745-9_15

    Chapter  Google Scholar 

  7. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. IACR Cryptol. ePrint Arch. 2013, 404 (2013)

    MATH  Google Scholar 

  8. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5

    Chapter  Google Scholar 

  9. Biryukov, A., Perrin, L.: State of the art in lightweight symmetric cryptography. IACR Cryptol. ePrint Arch. 2017, 511 (2017)

    Google Scholar 

  10. Biryukov, A., Velichkov, V., Le Corre, Y.: Automatic search for the best trails in ARX: application to block cipher Speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 289–310. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_15

    Chapter  Google Scholar 

  11. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

    Chapter  Google Scholar 

  12. Chen, J., Teh, J., Liu, Z., Chunhua, S., Samsudin, A., Xiang, Y.: Towards accurate statistical analysis of security margins: new searching strategies for differential attacks. IEEE Trans. Comput. 66(10), 1763–1777 (2017)

    Article  MathSciNet  Google Scholar 

  13. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improved and multiple linear cryptanalysis of reduced round serpent. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 51–65. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79499-8_6

    Chapter  MATH  Google Scholar 

  14. Cui, T., Jia, K., Kai, F., Chen, S., Wang, M.: New automatic search tool for impossible differentials and zero-correlation linear approximations. IACR Cryptol. ePrint Arch. 2016, 689 (2016)

    Google Scholar 

  15. Dobraunig, C., et al.: Rasta: a cipher with low ANDdepth and few ANDs per bit. IACR Cryptol. ePrint Arch. 2018, 181 (2018)

    Google Scholar 

  16. Dobraunig, C., Eichlseder, M., Mendel, F.: Heuristic tool for linear cryptanalysis with applications to CAESAR candidates. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 490–509. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_20

    Chapter  Google Scholar 

  17. Eichlseder, M., Mendel, F., Schläffer, M.: Branching heuristics in differential collision search with applications to SHA-512. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 473–488. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_24

    Chapter  Google Scholar 

  18. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-Based automatic search algorithms for differential and linear trails for speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_14

    Chapter  Google Scholar 

  19. Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen key differential cryptanalysis. In: Proceedings of Principles and Practice of Constraint Programming - 22nd International Conference, CP 2016, Toulouse, France, September 5–9, 2016, pp. 584–601 (2016)

    Google Scholar 

  20. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_2

    Chapter  Google Scholar 

  21. Matsui, M.: On correlation between the order of S-boxes and the strength of DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053451

    Chapter  Google Scholar 

  22. Mouha, N., Preneel, B.: A proof that the ARX cipher Salsa20 is secure against differential cryptanalysis. IACR Cryptol. ePrint Arch. 2013, 328 (2013)

    Google Scholar 

  23. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34704-7_5

    Chapter  MATH  Google Scholar 

  24. Ohta, K., Moriai, S., Aoki, K.: Improving the search algorithm for the best linear expression. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 157–170. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_13

    Chapter  Google Scholar 

  25. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and cryptanalysis aspects. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 185–215. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_7

    Chapter  Google Scholar 

  26. Sun, S., et al.: Analysis of AES, SKINNY, and others with constraint programming. IACR Trans. Symmetric Cryptol. 2017(1), 281–306 (2017)

    Google Scholar 

  27. Sun, S., et al.: Towards finding the best characteristics of some bit-oriented block ciphers and automatic enumeration of (related-key) differential and linear characteristics with predefined properties. Cryptology ePrint Archive, Report 2014/747 (2014). http://eprint.iacr.org/2014/747

  28. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9

    Chapter  Google Scholar 

  29. Shengbao, W., Wang, M.: Security evaluation against differential cryptanalysis for block cipher structures. IACR Cryptol. ePrint Arch. 2011, 551 (2011)

    Google Scholar 

  30. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_24

    Chapter  Google Scholar 

  31. Yao, Y., Zhang, B., Wu, W.: Automatic search for linear trails of the SPECK family. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 158–176. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5_9

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for many helpful comments. The work is supported by the National Natural Science Foundation of China (61732021, 61772519), the Youth Innovation Promotion Association of Chinese Academy of Sciences, the Chinese Major Program of National Cryptography Development Foundation, and the Institute of Information Engineering, CAS (Grant No. Y7Z0341103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siwei Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Sun, S., Cai, J., Hu, L. (2018). Speeding up MILP Aided Differential Characteristic Search with Matsui’s Strategy. In: Chen, L., Manulis, M., Schneider, S. (eds) Information Security. ISC 2018. Lecture Notes in Computer Science(), vol 11060. Springer, Cham. https://doi.org/10.1007/978-3-319-99136-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99136-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99135-1

  • Online ISBN: 978-3-319-99136-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics