Suitable Overlapping Set Visualization Techniques and Their Application to Visualize Biclustering Results on Gene Expression Data

  • Haithem Aouabed
  • Rodrigo Santamaría
  • Mourad ElloumiEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 903)


Biclustering algorithms applied in classification of genomic data have two main theoretical differences compared to traditional clustering ones. First, it provides bi-dimensionality, grouping both genes and conditions together, since a group of genes can be co-regulated for a given condition but not for others. Second, it considers group overlaps, allowing genes to contribute to more than one activity. Visualizing biclustering results is a non-trivial process due to these two characteristics. Heatmaps-based techniques are considered as a standard for visualizing clustering results. They consist on reordering rows and/or columns in order to show clusters as contiguous blocks. However, for biclustering results, this same process cannot be applied without duplicating rows and/or columns. Moreover, a variety of techniques for visualizing sets and their relations has been published in the past recent years. Some of them can be considered as an ideal solution to visualize large sets with high number of possible relations between them. In this paper, we firstly review several set-visualizing techniques that we consider most suitable to satisfy the two mentioned features of biclustering and then, we discuss how these new techniques can visualize biclustering results.


Biclustering Visualization Sets Set-visualizing techniques Overlaps 


  1. 1.
    Alsallakh, B., Aigner, W., Miksch, S., Hauser, H.: Radial Sets: interactive visual analysis of large overlapping sets. IEEE Trans. Vis. Comput. Graph. 19(12), 2496–2505 (2013)CrossRefGoogle Scholar
  2. 2.
    Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S., Rodgers, P.: Visualizing sets and set-typed data: state-of-the-art and future challenges. In: Eurographics Conference on Visualization (EuroVis) State of the Art Reports, pp. 1–21 (2014)Google Scholar
  3. 3.
    Barkow, S., Bleuler, S., Prelic, A., Zimmermann, P., Zitzler, E.: BicAT: a biclustering analysis toolbox. Bioinformatics 22(10), 1282–1283 (2006)CrossRefGoogle Scholar
  4. 4.
    Baron, M.E.: A note on the historical development of logic diagrams: Leibniz, Euler and Venn. Math. Gaz. 53(384), 113 (1969)CrossRefGoogle Scholar
  5. 5.
    Cheng, K.O., Law, N.F., Siu, W.C., Lau, T.H.: BiVisu: software tool for bicluster detection and visualization. Bioinformatics 23(17), 2342–2344 (2007)CrossRefGoogle Scholar
  6. 6.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of International Conference on Intelligent Systems for Molecular Biology, pp. 93–103 (2000)Google Scholar
  7. 7.
    Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95(25), 1–6 (1998)CrossRefGoogle Scholar
  8. 8.
    Gonçalves, J.P., Madeira, S.C., Oliveira, A.L.: BiGGEsTS: integrated environment for biclustering analysis of time series gene expression data. BMC Res. Notes 2, 1–11 (2009)CrossRefGoogle Scholar
  9. 9.
    Grothaus, G.A., Mufti, A., Murali, T.M.: Automatic layout and visualization of biclusters. Algorithms Mol. Biol. 1(1) (2006)Google Scholar
  10. 10.
    Heinrich, J., Seifert, R., Burch, M., Weiskopf, D.: BiCluster viewer: a visualization tool for analyzing gene expression data. In: Bebis, G., et al. (eds.) ISVC 2011. LNCS, vol. 6938, pp. 641–652. Springer, Heidelberg (2011). Scholar
  11. 11.
    Henry, N., Fekete, J.D., McGuffin, M.J.: NodeTrix: a hybrid visualization of social networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007)CrossRefGoogle Scholar
  12. 12.
    Hochreiter, S., et al.: FABIA: factor analysis for bicluster acquisition. Bioinformatics 26(12), 1520–1527 (2010)CrossRefGoogle Scholar
  13. 13.
    Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1(2), 69–91 (1985)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jin, R., Xiang, Y., Fuhry, D., Dragan, F.F.: Overlapping matrix pattern visualization: a hypergraph approach. In: Proceedings of IEEE International Conference on Data Mining, ICDM, pp. 313–322 (2008)Google Scholar
  15. 15.
    Kaiser, S., et al.: BiClust: BiCluster Algorithms. R package version 1.0.2 (2013)Google Scholar
  16. 16.
    Euler, L.: Lettres a une princesse d’Allemagne sur divers sujets de physique et de philosophie. Leonhard Euler: Free Download & Streaming: Internet Archive, vol. 1, 1 edn (1772)Google Scholar
  17. 17.
    Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., Pfister, H.: UpSet: visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 20(12), 1983–1992 (2014)CrossRefGoogle Scholar
  18. 18.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE Trans. Comput. Biol. Bioinforma. 1(1), 24–45 (2004)CrossRefGoogle Scholar
  19. 19.
    Padilha, V.A., Campello, R.J.G.B.: A systematic comparative evaluation of biclustering techniques. BMC Bioinform. 18, 55 (2017)CrossRefGoogle Scholar
  20. 20.
    Pontes, B., Giráldez, R., Aguilar-Ruiz, J.S.: Biclustering on expression data: a review. J. Biomed. Inform. 57, 163–180 (2015)CrossRefGoogle Scholar
  21. 21.
    Prelić, A., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)CrossRefGoogle Scholar
  22. 22.
    Reid, R.J.D., et al.: Selective ploidy ablation, a high-throughput plasmid transfer protocol, identifies new genes affecting topoisomerase I-induced DNA damage. Genome. Res. 21(3), 477–486 (2011)CrossRefGoogle Scholar
  23. 23.
    Riche, N.H., Dwyer, T.: Untangling Euler diagrams. IEEE Trans. Vis. Comput. Graph. 16(6), 1090–1099 (2010)CrossRefGoogle Scholar
  24. 24.
    Rodgers, P.: A survey of Euler diagrams. J. Vis. Lang. Comput. 25(3), 134–155 (2014)CrossRefGoogle Scholar
  25. 25.
    Sadana, R., Major, T., Dove, A., Stasko, J.: OnSet: A visualization technique for large-scale binary set data. IEEE Trans. Vis. Comput. Graph. 20(12), 1993–2002 (2014)CrossRefGoogle Scholar
  26. 26.
    Santamaría, R., Therón, R., Quintales, L.: BicOverlapper 2.0: visual analysis for gene expression. Bioinformatics 30(12), 1785–1786 (2014)CrossRefGoogle Scholar
  27. 27.
    Shamir, R., et al.: EXPANDER - an integrative program suite for microarray data analysis. BMC Bioinform. 6, 1–12 (2005)CrossRefGoogle Scholar
  28. 28.
    Streit, M., Gratzl, S., Gillhofer, M., Mayr, A., Mitterecker, A., Hochreiter, S.: Furby: fuzzy force-directed bicluster visualization. BMC Bioinform. 15(6), S4 (2014)CrossRefGoogle Scholar
  29. 29.
    Tu, B.P., Kudlicki, A., Rowicka, M., McKnight, S.L.: Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310(5751), 1152–1158 (2005)CrossRefGoogle Scholar
  30. 30.
    Wilkinson, L., Friendly, M.: The history of the cluster heat map. Am. Stat. 63(2), 179–184 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Haithem Aouabed
    • 1
  • Rodrigo Santamaría
    • 2
  • Mourad Elloumi
    • 1
    Email author
  1. 1.Laboratory of Technologies of Information and Communication and Electrical Engineering (LaTICE), National High School of Engineers of Tunis (ENSIT)University of TunisTunisTunisia
  2. 2.Departamento de Informática y AutomáticaUniversidad de SalamancaSalamancaSpain

Personalised recommendations