Development of a Collaborative Platform for Closed Loop Production Control

  • Ben LuetkehoffEmail author
  • Matthias Blum
  • Moritz Schroeter
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 534)


In today’s turbulent market, the way data are used in production is one of the key aspects to maintain or increase a manufacturing company’s ability to compete. Even though most companies are aware of the advantages of collecting, analyzing and using data, the majority of them do not exploit these fully. Thus, IT systems and sensors are integrated into the shop floor in order to deal with the current challenges, leading to an overwhelming amount of data without contributing to an improvement of production control. Because of developments like digitization and Industry 4.0, there is an innumerable amount of existing research focusing on data analytics, artificial intelligence and pattern recognition. However, research on collaborative platforms in traditional production control still needs improvement. Therefore, the main goal of this paper is to present a platform based closed loop production control and to discuss the relevant data. The collaborative platform represents the basis for a future analysis of high-resolution data using cognitive systems in order for companies to maximize the automation of their production. A use case at the end of the paper shows the potential implementation of the findings in practice.



The European Regional Development Fund (ERDF) funded the presented research. The authors would like to thank the European Regional Development Fund for the kind support and making this research possible.


  1. 1.
    Kropp, S.K.: Entwicklung eines Ereignismodells als Grundlage der Produktionsregelung. In: Schriftenreihe Rationalisierung, 1st edn., vol 137. Apprimus, Aachen (2016)Google Scholar
  2. 2.
    Schuh, G., Blum, M.: Design of a data structure for the order processing as a basis for data analytics methods. In: Portland International Conference on Management of Engineering and Technology (PICMET), Honolulu, pp. 2164–2169 (2016)Google Scholar
  3. 3.
    Luetkehoff, B., Blum, M., Schroeter, M.: Self-learning production control using algorithms of artificial intelligence. In: Camarinha-Matos, L.M., Afsarmanesh, H., Fornasiero, R. (eds.) PRO-VE 2017. IFIP, vol. 506, pp. 299–306. Springer, Cham (2017). Scholar
  4. 4.
    Camarinha-Matos, L.M., Afsarmanesh, H., Fornasiero, R. (eds.): Collaboration in a data-rich world. IFIP, vol. 506. Springer, Cham (2017). Scholar
  5. 5.
    Meier, C.: Echtzeitfähige Produktionsplanung und -regelung in der Auftragsabwicklung des Maschinen- und Anlagenbaus, 1st edn., Wissenschaft, vol. 117. Apprimus, Aachen (2013)Google Scholar
  6. 6.
    Gawer, A., Cusumano, M.A.: Industry platforms and ecosystem innovation. J. Prod. Innov. Manag. 31(3), 417–433 (2014). Scholar
  7. 7.
    Hamann, T.: Lernfähige intelligente Produktionsregelung. Informationstechnische Systeme und Organisation von Produktion und Logistik, vol 7. GITO, Heidelberg (2008)Google Scholar
  8. 8.
    Hauptvogel, A.: Bewertung und Gestaltung von cyber-physischer Feinplanung, 1. Aufl. Produktionssystematik, vol 6. Apprimus Verlag, Aachen (2015)Google Scholar
  9. 9.
    Schuh, G., Blum, M., Reschke, J., et al.: Der Digitale Schatten in der Auftragsabwicklung. ZWF 111, 48–51 (2016)CrossRefGoogle Scholar
  10. 10.
    Kassner, L., Gröger, C., Mitschang, B., et al.: Product life cycle analytics – next generation data analytics on structured and unstructured data. Procedia CIRP 33, 35–40 (2015)CrossRefGoogle Scholar
  11. 11.
    Glenn, J.C.: Collective intelligence and an application by the millennium project. World Futures Rev. 5(3), 235–243 (2013). Scholar
  12. 12.
    Wiendahl, H.-P.: Betriebsorganisation für Ingenieure, 8., überarb. Aufl. Hanser, München (2014)Google Scholar
  13. 13.
    Wiendahl, H.-P.: Fertigungsregelung: Logistische Beherrschung von Fertigungsabläufen auf Basis des Trichtermodells. Hanser, München (1997)Google Scholar
  14. 14.
    Kletti, J., Schumacher, J.: Die perfekte Produktion: Manufacturing Excellence durch Short Interval Technology (SIT), 2nd edn. Springer, Heidelberg (2014). Scholar
  15. 15.
    Simon, D.: Fertigungsregelung durch zielgrößenorientierte Planung und logistisches Störungsmanagement. iwb Forschungsberichte, vol. 85. Springer, Heidelberg (1995). Scholar
  16. 16.
    Zetlmayer, H.: Verfahren zur simulationsgestützten Produktionsregelung in der Einzel- und Kleinserienproduktion. iwb Forschungsberichte, vol. 74. Springer, New York (1994). Scholar
  17. 17.
    Selke, C.: Entwicklung von Methoden zur automatischen Simulationsmodellgenerierung, vol. 193. Utz, München (2005)Google Scholar
  18. 18.
    Fowler, M.: Domain-specific languages: description based on print version record. In: A Martin Fowler Signature Book. Cover Addison-Wesley Signature Series. Addison-Wesley, Upper Saddle River (2011)Google Scholar
  19. 19.
    Goldschmidt, T.: Towards an infrastructure for domain-specific languages in a multi-domain cloud platform. In: Cabot, J., Rubin, J. (eds.) ECMFA 2014. LNCS, vol. 8569, pp. 242–253. Springer, Cham (2014). Scholar
  20. 20.
    VDI R: 5600, Manufacturing Execution Systems. Verein Deutscher Ingenieure (2007)Google Scholar
  21. 21.
    Kletti, J.: MES - Manufacturing Execution System: Moderne Informationstechnologie Zur Prozessfähigkeit Der Wertschöpfung. Springer, Dordrecht (2006). Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Ben Luetkehoff
    • 1
    Email author
  • Matthias Blum
    • 1
  • Moritz Schroeter
    • 1
  1. 1.FIR at RWTH Aachen University, Production ManagementAachenGermany

Personalised recommendations