Computational Models of Grid Cell Firing

  • Daniel BushEmail author
  • Christoph Schmidt-HieberEmail author
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)


Grid cells in the medial entorhinal cortex (mEC) fire whenever the animal enters a regular triangular array of locations that cover its environment. Since their discovery, several models that can account for these remarkably regular spatial firing patterns have been proposed. These generally fall into one of three classes, generating grid cell firing patterns either by oscillatory interference, through continuous attractor dynamics, or as a result of spatially modulated input from a place cell population. Neural network simulations have been used to explore the implications and predictions made by each class of model, while subsequent experimental data have allowed their architecture to be refined. Here, we describe implementations of two classes of grid cell model – oscillatory interference and continuous attractor dynamics – alongside a hybrid model that incorporates the principal features of each. These models are intended to be both parsimonious and make testable predictions. We discuss the strengths and weaknesses of each model and the predictions they make for future experimental manipulations of the grid cell network in vivo.


Grid cells Medial entorhinal cortex Spatial cognition Oscillatory interference Continuous attractor dynamics 



The authors would like to thank Andrej Bicanski, Neil Burgess, Talfan Evans, Robin Hayman, Matt Nolan and Freyja Ólafsdóttir for helpful comments and discussion during the preparation of this chapter. This work was supported by a grant from the ERC (StG 678790 NEWRON to C.S.-H.).


  1. Alonso A, Llinas RR (1989) Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342:175–177PubMedCrossRefGoogle Scholar
  2. Andrzejak RG, Bicanski A (2007) Forming place cells through feedforward input from grid cells – a computational model. Soc Neurosci Abst 753:1Google Scholar
  3. Barry C, Lever C, Hayman R, Hartley T, Burton S, O’Keefe J, Jeffery K, Burgess N (2006) The boundary vector cell model of place cell firing and spatial memory. Rev Neurosci 17:71–97PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barry C, Hayman R, Burgess N, Jeffery K (2007) Experience-dependent rescaling of entorhinal grids. Nat Neurosci 10:682–684PubMedCrossRefGoogle Scholar
  5. Barry C, Ginsberg LL, O’Keefe J, Burgess N (2012a) Grid cell firing patterns signal environmental novelty by expansion. PNAS 109:17687–17692PubMedCrossRefGoogle Scholar
  6. Barry C, Bush D, O’Keefe J, Burgess N (2012b) Models of grid cells and theta oscillations. Nature 488:E1PubMedCrossRefGoogle Scholar
  7. Bittner KC, Grienberger C, Vaidya SP, Milstein AD, Macklin JJ, Suh J, Tonegawa S, Magee JC (2015) Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat Neurosci 18:1133–1142PubMedPubMedCentralCrossRefGoogle Scholar
  8. Blair HT, Gupta K, Zhang K (2008) Conversion of a phase- to a rate-coded position signal by a three stage model of theta cells, place cells, and grid cells. Hippocampus 18:1239–1255PubMedPubMedCentralCrossRefGoogle Scholar
  9. Blair HT, Wu D, Cong J (2014) Synchronization coding by ring attractors: a theoretical framework for oscillatory neurocomputing. Philos Trans R Soc Lond B 369:20120526CrossRefGoogle Scholar
  10. Boccara CN, Sargolini F, Thoresen VH, Solstad T, Witter MP, Moser EI, Moser MB (2010) Grid cells in pre- and parasubiculum. Nat Neurosci 13:987–994PubMedCrossRefGoogle Scholar
  11. Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikmann D, Kubie JL, Roudi Y, Moser EI, Moser M-B (2013) Grid cells require excitatory drive from the hippocampus. Nat Neurosci 16:309–317PubMedCrossRefGoogle Scholar
  12. Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME (2011) Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332:595–599PubMedPubMedCentralCrossRefGoogle Scholar
  13. Buetfering C, Allen K, Monyer H (2014) Parvalbumin interneurons provide grid cell–driven recurrent inhibition in the medial entorhinal cortex. Nat Neurosci 17:710–718PubMedCrossRefGoogle Scholar
  14. Burak Y, Fiete IR (2009) Accurate path integration in continuous attractor network models of grid cells. PLoS Comput Biol 5:e1000291PubMedPubMedCentralCrossRefGoogle Scholar
  15. Burgess N, Barry C, Jeffery KJ, O’Keefe J (2005) A grid and place cell model of path integration utilizing phase precession versus theta. Computational cognitive neuroscience conference poster; Washington, DC:
  16. Burgess N, Barry C, O'Keefe J (2007) An oscillatory interference model of grid cell firing. Hippocampus 17:801–812PubMedPubMedCentralCrossRefGoogle Scholar
  17. Burgess N (2008) Grid cells and theta as oscillatory interference: theory and predictions. Hippocampus 18:1157–1174PubMedPubMedCentralCrossRefGoogle Scholar
  18. Burgess CP, Burgess N (2014) Controlling phase noise in oscillatory interference models of grid cell firing. J Neurosci 34:6224–6232PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bush D, Burgess N (2014) A hybrid oscillatory interference/continuous attractor network model of grid cell firing. J Neurosci 34:5065–5079PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bush D, Barry C, Manson D, Burgess N (2015) Using grid cells for navigation. Neuron 87:507–520PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cei A, Girardeau G, Drieu C, El Kanbi K, Zugaro M (2014) Reversed theta sequences of hippocampal cell assemblies during backward travel. Nat Neurosci 17:719–724PubMedCrossRefGoogle Scholar
  22. Chen G, Manson D, Cacucci F, Wills TJ (2016) Absence of visual input results in the disruption of grid cell firing in the mouse. Curr Biol 26:2335PubMedPubMedCentralCrossRefGoogle Scholar
  23. Climer JR, Newman EL, Hasselmo ME (2013) Phase coding by grid cells in unconstrained environments: two-dimensional phase precession. Eur J Neurosci 38:2526–2541PubMedPubMedCentralCrossRefGoogle Scholar
  24. Conklin J, Eliasmith C (2005) An attractor network model of path integration in the rat. J Comput Neurosci 18:183–203PubMedCrossRefGoogle Scholar
  25. Couey JJ, Witoelar A, Zhang S-J, Zheng K, Ye J, Dunn B, Czajkowski R, Moser M-B, Moser EI, Roudi Y, Witter MP (2013) Recurrent inhibitory circuitry as a mechanism for grid formation. Nat Neurosci 16:318–324CrossRefGoogle Scholar
  26. Derdikman D, Whitlock JR, Tsao A, Fyhn M, Hafting T, Moser M-B, Moser EI (2009) Fragmentation of grid cell maps in multicompartment environment. Nat Neurosci 12:1325–1332PubMedCrossRefGoogle Scholar
  27. Dhillon A, Jones R (2000) Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro. Neuroscience 99:413–422CrossRefGoogle Scholar
  28. Doeller CF, Barry C, Burgess N (2010) Evidence for grid cells in a human memory network. Nature 463:657–661PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dordek Y, Soudry D, Meir R, Derdikman D (2016) Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis. elife 5:e10094PubMedPubMedCentralCrossRefGoogle Scholar
  30. Domnisoru C, Kinkhabwala AA, Tank DW (2013) Membrane potential dynamics of grid cells. Nature 495:199–204PubMedPubMedCentralCrossRefGoogle Scholar
  31. Eliav T, Geva-Sagiv M, Finkelstein A, Yartsev M, Rubin A, Las L, Ulanovksy N (2015) Synchronicity without rhythmicity in the hippocampal formation of behaving bats. Soc Neurosci Abstr 632:01Google Scholar
  32. Ekstrom AD, Caplan JB, Shattuck K, Fried I, Kahana MJ (2005) Human hippocampal theta activity during virtual navigation. Hippocampus 15:881–889PubMedCrossRefGoogle Scholar
  33. Evans T, Bicanski A, Bush D, Burgess N (2016) How environment and self-motion combine in neural representations of space. J Physiol 594:6535PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fiete IR, Burak Y, Brookings T (2008) What grid cells convey about rat location. J Neurosci 28:6858–6871PubMedCrossRefGoogle Scholar
  35. Fuchs EC, Neitz A, Pinna R, Melzer S, Caputi A, Monyer H (2016) Local and distant input controlling excitation in layer II of the medial entorhinal cortex. Neuron 89:194–208PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci 26:4266–4276PubMedCrossRefGoogle Scholar
  37. Fyhn M, Hafting T, Treves A, Moser M-B, Moser EI (2007) Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446:190–194PubMedCrossRefGoogle Scholar
  38. Fyhn M, Hafting T, Witter MP, Moser EI, Moser MB (2008) Grid cells in mice. Hippocampus 18:1230–1238PubMedCrossRefGoogle Scholar
  39. Garden DLF, Dodson PD, O’Donnell C, White MD, Nolan MF (2008) Tuning of synaptic integration in the medial entorhinal cortex to the Organization of Grid Cell Firing Fields. Neuron 60:875–889PubMedCrossRefGoogle Scholar
  40. Gatome CW, Slomianka L, Lipp HP, Amrein I (2010) Number estimates of neuronal phenotypes in layer II of the medial entorhinal cortex of rat and mouse. Neuroscience 170:156–165CrossRefGoogle Scholar
  41. Giocomo LM, Zilli EA, Fransén E, Hasselmo ME (2007) Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315:1719–1722PubMedPubMedCentralCrossRefGoogle Scholar
  42. Giocomo LM, Moser M-B, Moser EI (2011) Computational models of grid cells. Neuron 71:589–603PubMedCrossRefGoogle Scholar
  43. Guanella A, Kiper D, Verschure P (2007) A model of grid cells based on a twisted torus topology. Int J Neural Syst 17:231–240PubMedCrossRefGoogle Scholar
  44. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806PubMedCrossRefGoogle Scholar
  45. Hafting T, Fyhn M, Bonnevie T, Moser MB, Moser EI (2008) Hippocampus-independent phase precession in entorhinal grid cells. Nature 453:1248–1252PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hardcastle K, Ganguli S, Giocomo LM (2015) Environmental boundaries as an error correction mechanism for grid cells. Neuron 86:1–13CrossRefGoogle Scholar
  47. Hasselmo ME (2008) Grid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting. Hippocampus 18:1116–1126Google Scholar
  48. Heys JG, Rangarajan KV, Dombeck DA (2014) The functional micro-organization of grid cells revealed by cellular-resolution imaging. Neuron 84:1079–1090PubMedPubMedCentralCrossRefGoogle Scholar
  49. Horiuchi TK, Moss CF (2015) Grid cells in 3-D: reconciling data and models. Hippocampus 25:1489–1500PubMedCrossRefGoogle Scholar
  50. Jacobs J, Weidemann CT, Miller JF, Solway A, Burke JF, Wei X, Suthana N, Sperling MR, Sharan AD, Fried I, Kahana MJ (2013) Direct recordings of grid-like neuronal activity in human spatial navigation. Nat Neurosci 16:1188–1190PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jeewajee A, Barry C, O'Keefe J, Burgess N (2008) Grid cells and theta as oscillatory interference: electrophysiological data from freely-moving rats. Hippocampus 18:1175–1185PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jeewajee A, Barry C, Douchamps V, Manson D, Lever C, Burgess N (2014) Theta phase precession of grid and place cell firing in open environments. Philos Trans R Soc B 369:20120532CrossRefGoogle Scholar
  53. Killian NJ, Jutras MJ, Buffalo EA (2012) A map of visual space in the primate entorhinal cortex. Nature 491:761–764PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kitamura T, Pignatelli M, Suh J, Kohara K, Yoshiki A, Abe K, Tonegawa S (2014) Island cells control temporal association memory. Science 343:896–901PubMedPubMedCentralCrossRefGoogle Scholar
  55. Koenig J, Linder AN, Leutgeb JK, Leutgeb S (2011) The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332:592–595PubMedCrossRefGoogle Scholar
  56. Kropff E, Treves A (2008) The emergence of grid cells: intelligent design or just adaptation? Hippocampus 18:1256–1269PubMedCrossRefGoogle Scholar
  57. Krupic J, Bauza M, Burton S, Barry C, O’Keefe J (2015) Grid cell symmetry is shaped by environmental geometry. Nature 518:232–235PubMedPubMedCentralCrossRefGoogle Scholar
  58. Langston RF, Ainge JA, Couey JJ, Canto CB, Bjerknes TL, Witter MP, Moser EI, Moser MB (2010) Development of the spatial representation system in the rat. Science 328:1576–1580PubMedCrossRefGoogle Scholar
  59. Lee D, Lin BJ, Lee AK (2012) Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337:849–853PubMedCrossRefGoogle Scholar
  60. Lengyel M, Szatmáry Z, Érdi P (2003) Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing. Hippocampus 13:700–714PubMedCrossRefGoogle Scholar
  61. Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N (2009) Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci 29:9771–9777PubMedPubMedCentralCrossRefGoogle Scholar
  62. McFarland WL, Teitelbaum H, Hedges EK (1975) Relationship between hippocampal theta activity and running speed in the rat. J Comp Physiol Psychol 88:324–328PubMedCrossRefGoogle Scholar
  63. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the cognitive map. Nat Rev Neurosci 7:663–678PubMedCrossRefGoogle Scholar
  64. Mhatre H, Gorchetchnikov A, Grossberg S (2012) Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex. Hippocampus 22:320–334PubMedCrossRefGoogle Scholar
  65. Naumann RK, Ray S, Prokop S, Las L, Heppner FL, Brecht M (2015) Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex. J Comp Neurol 524:783–806PubMedPubMedCentralCrossRefGoogle Scholar
  66. Navratilova Z, Giocomo LM, Fellous JM, Hasselmo ME, McNaughton BL (2012) Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics. Hippocampus 22:772–789PubMedCrossRefGoogle Scholar
  67. O'Keefe J, Nadel L (1978) The Hippocampus as a cognitive map. Oxford University Press, OxfordGoogle Scholar
  68. O'Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330PubMedCrossRefGoogle Scholar
  69. Ólafsdóttir HF, Carpenter F, Barry C (2016) Coordinated grid and place cell replay during rest. Nat Neurosci 19:792–794PubMedCrossRefGoogle Scholar
  70. Orchard J (2015) Oscillator-interference models of path integration do not require theta oscillations. Neural Comput 27:548–560PubMedCrossRefGoogle Scholar
  71. Pastoll H, Ramsden H, Nolan MF (2012) Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid firing fields. Front Neural Circuits 6:1–21CrossRefGoogle Scholar
  72. Pastoll H, Solanka L, van Rossum MCW, Nolan MF (2013) Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron 77:141–154PubMedCrossRefGoogle Scholar
  73. Pérez-Escobar JA, Kornienko O, Latuske P, Kohler L, Allen K (2016) Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex. elife 5: e16937Google Scholar
  74. Raudies F, Brandon MP, Chapman GW, Hasselmo ME (2015) Head direction is coded more strongly than movement direction in a population of entorhinal neurons. Brain Res 1621:355–367PubMedCrossRefGoogle Scholar
  75. Ray S, Naumann R, Burgalossi A, Tang Q, Schmidt H, Brecht M (2014) Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex. Science 343:891–896PubMedPubMedCentralCrossRefGoogle Scholar
  76. Reifenstein ET, Kempter R, Schreiber S, Stemmler MB, Herz AV (2012) Grid cells in rat entorhinal cortex encode physical space with independent firing fields and phase precession at the single-trial level. PNAS 109:6301–6306PubMedCrossRefGoogle Scholar
  77. Reifenstein E, Stemmler M, Herz AVM, Kempter R, Schreiber S (2014) Movement dependence and layer specificity of entorhinal phase precession in two-dimensional environments. PLoS One 9:e100638PubMedPubMedCentralCrossRefGoogle Scholar
  78. Remme MW, Lengyel M, Gutkin BS (2010) Democracy-independence trade-off in oscillating dendrites and its implications for grid cells. Neuron 66:429–437PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rivas J, Gaztelu JM, García-Austt E (1996) Changes in hippocampal cell discharge patterns and theta rhythm spectral properties as a function of walking velocity in the Guinea pig. Exp Brain Res 108:113–118PubMedCrossRefGoogle Scholar
  80. Rolls ET, Stringer SM, Elliot T (2006) Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Netw Comput Neural Syst 447:447–465CrossRefGoogle Scholar
  81. Samsonovich A, McNaughton BL (1997) Path integration and cognitive mapping in a continuous attractor neural network model. J Neurosci 17:5900–5920PubMedCrossRefGoogle Scholar
  82. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312:758–762CrossRefGoogle Scholar
  83. Savelli F, Yoganarasimha D, Knierim JJ (2008) Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 18:1270–1282PubMedPubMedCentralCrossRefGoogle Scholar
  84. Schmidt-Hieber C, Häusser M (2013) Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nat Neurosci 16:325–331PubMedCrossRefGoogle Scholar
  85. Schmidt-Hieber C, Häusser M (2014) How to build a grid cell. Philos Trans R Soc B 369:20120520CrossRefGoogle Scholar
  86. Schmidt-Hieber C, Toleikyte G, Aitchison L, Roth A, Clark BA, Branco T, Häusser M (2017) Active dendritic integration as a mechanism for robust and precise grid cell firing. Nat Neurosci 20:1114–1121PubMedPubMedCentralCrossRefGoogle Scholar
  87. Schmidt-Hieber C, Nolan MF (2017) Synaptic integrative mechanisms for spatial cognition. Nat Neurosci 26:1483–1492CrossRefGoogle Scholar
  88. Sheffield ME, Dombeck DA (2015) Calcium transient prevalence across the dendritic arbour predicts place field properties. Nature 517:200–204CrossRefGoogle Scholar
  89. Shipston-Sharman O, Solanka L, Nolan MF (2016) Continuous attractor network models of grid cell firing based on excitatory–inhibitory interactions. J Physiol 594:6547.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Solanka L, van Rossum MCW, Nolan MF (2015) Noise promotes independent control of gamma oscillations and grid firing within a recurrent attractor network. elife 4:e06444PubMedCentralCrossRefPubMedGoogle Scholar
  91. Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 322:1865–1868PubMedCrossRefGoogle Scholar
  92. Stemmler M, Mathis A, Herz AVM (2015) Connecting multiple spatial scales to decode the population activity of grid cells. Sci Adv 1:e1500816PubMedPubMedCentralCrossRefGoogle Scholar
  93. Stensola H, Stensola T, Solstad T, Frøland K, Moser MB, Moser EI (2012) The entorhinal grid map is discretized. Nature 492:72–78PubMedCrossRefGoogle Scholar
  94. Stensola T, Stensola H, Moser M-B, Moser EI (2015) Shearing-induced asymmetry in entorhinal grid cells. Nature 518:207–212PubMedCrossRefGoogle Scholar
  95. Sun C, Kitamura T, Yamamoto J, Martin J, Pignatelli M, Kitch LJ, Schnitzer MJ, Tonegawa S (2015) Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells. PNAS 112:9466–9471PubMedCrossRefGoogle Scholar
  96. Tocker G, Barak O, Derdikman D (2015) Grid cells correlation structure suggests organized feedforward projections into superficial layers of the medial entorhinal cortex. Hippocampus 25:1599–1613PubMedCrossRefGoogle Scholar
  97. Vanderwolf CH (1969) Hippocampal electrical activity and voluntary movement in the rat. EEG Clin Neurophysiol 26:407–418CrossRefGoogle Scholar
  98. Watrous AJ, Lee DJ, Izadi A, Gurkoff GG, Shahlaie K, Ekstrom AD (2013) A comparative study of human and rat hippocampal low-frequency oscillations during spatial navigation. Hippocampus 23:656–661PubMedPubMedCentralCrossRefGoogle Scholar
  99. Welday AC, Shlifer IG, Bloom ML, Zhang K, Blair HT (2011) Cosine directional tuning of theta cell burst frequencies: evidence for spatial coding by oscillatory interference. J Neurosci 31:16157–16176PubMedPubMedCentralCrossRefGoogle Scholar
  100. Welinder PE, Burak Y, Fiete IR (2008) Grid cells: the position code, neural network models of activity, and the problem of learning. Hippocampus 18:1283–1300PubMedCrossRefGoogle Scholar
  101. Wells CE, Amos DP, Jeewajee A, Douchamps V, Rodgers RJ, O’Keefe J, Burgess N, Lever C (2013) Novelty and anxiolytic drugs dissociate two components of hippocampal theta in behaving rats. J Neurosci 33:8650–8667PubMedPubMedCentralCrossRefGoogle Scholar
  102. Widlowski J, Fiete IR (2014) A model of grid cell development through spatial exploration and spike time-dependent plasticity. Neuron 83:481–495CrossRefGoogle Scholar
  103. Wills TJ, Cacucci F, Burgess N, O’Keefe J (2010) Development of the hippocampal cognitive map in pre-weanling rats. Science 328:1573–1576PubMedPubMedCentralCrossRefGoogle Scholar
  104. Winter SS, Mehlman ML, Clark BJ, Taube JS (2015) Passive transport disrupts grid signals in the Parahippocampal cortex. Curr Biol 25:2493–2502PubMedPubMedCentralCrossRefGoogle Scholar
  105. Yartsev MM, Witter MP, Ulanovsky N (2011) Grid cells without theta oscillations in the entorhinal cortex of bats. Nature 479:103–107PubMedCrossRefGoogle Scholar
  106. Yoon K, Buice MA, Barry C, Hayman R, Burgess N, Fiete IR (2013) Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat Neurosci 16:1077–1084PubMedPubMedCentralCrossRefGoogle Scholar
  107. Yoon K, Lewallen S, Kinkhabwala AA, Tank DW, Fiete IR (2016) Grid cell responses in 1D environments assessed as slices through a 2D lattice. Neuron 89:1086–1099PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zhang K (1996) Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J Neurosci 16:2112–2126PubMedCrossRefGoogle Scholar
  109. Zilli EA (2012) Models of grid cell spatial firing published 2005–2011. Front Neural Circuits 6:16PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.UCL Institute of Cognitive NeuroscienceLondonUK
  2. 2.UCL Institute of NeurologyLondonUK
  3. 3.Institut PasteurParisFrance

Personalised recommendations