Models of Rate and Phase Coding of Place Cells in Hippocampal Microcircuits

  • Vassilis CutsuridisEmail author
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)


Place cells are neurons that fire when the animal occupies a specific location within its environment (O’Keefe and Nadel 1978). As different place cells have different place fields (locations where they fire), they are thought to provide a cognitive map for the rat. Furthermore, place cells are speed-dependent oscillators, as their oscillation frequency is determined by the animal’s traveling speed (Buzsaki 2011). Their firing rates and phases also change with respect to LFP theta (O’Keefe and Recce 1993; Johnson and Redish 2007; Skaggs etal. 1996; Wilson and McNaughton 1993). Theta oscillations (4–10 Hz) are observed during animal exploration and rapid eye movement sleep (Buzsaki 2002). During exploration (Fig. 1 top) hippocampal place cells’ firing rate increases as the position of the rat in the place field increases, reaching a maximal value just after the middle of the place field and beyond this point it decreases again (Fig. 1 medium; Harris etal. 2002; Mehta etal. 2002). Place cells have also been shown to systematically shift their phase of firing to earlier phases of the theta rhythm as the animal transverses the place field (a phenomenon known as theta phase precession) (Fig. 1 bottom; O’Keefe and Recce 1993; Skaggs etal. 1996).


Navigation Place cell Hippocampus Cognitive map Phase precession Rate coding Theta rhythm Inhibition Synaptic plasticity 


  1. Alonso A, García-Austt E (1987) Neuronal sources of theta rhythm in the entorhinal cortex of the rat. II. Phase relations between unit discharges and theta field potentials. Exp Brain Res 67(3):502–509CrossRefGoogle Scholar
  2. Ascoli GA, Alonso-Nanclares L, Anderson SA, Barionuevo G et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9(7):557–568CrossRefGoogle Scholar
  3. Baude A, Bleasdale C, Dalezios Y, Somogyi P, Klausberger T (2007) Immunoreactivity for the GABAA receptor alpha1 subunit, somatostatin and Connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus. Cerebral Cortex 17(9):2094–2107CrossRefGoogle Scholar
  4. Borhegyi Z, Varga V, Szilagyi N, Fabo D, Freund TF (2004) Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. J Neurosci 24(39):8470–8479CrossRefGoogle Scholar
  5. Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33(3):325–340CrossRefGoogle Scholar
  6. Buzsaki G (2011) Hippocampus. Scholarpedia 6(1):1468CrossRefGoogle Scholar
  7. Capogna M (2011) Neurogliaform cells and other interneurons of stratum lacunosum-moleculare gate entorhinal-hippocampal dialogue. J Physiol 589(9):1875–1883CrossRefGoogle Scholar
  8. Cobb S, Lawrence JJ (2010) Neuromodulation of hippocampal cells and circuits. In: Cutsuridis V et al (eds) Hippocampal Microcircuits: a Computational Modeller’s Resource Book. Springer, New York, pp 187–246CrossRefGoogle Scholar
  9. Cobb S, Vida I (2010) Neuronal activity patterns in anaesthetized animals. In: Cutsuridis V et al (eds) Hippocampal microcircuits: a computational modeler’s resource book. Springer, New York, pp 277–291CrossRefGoogle Scholar
  10. Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462(19):353–358CrossRefGoogle Scholar
  11. Cutsuridis V, Cobb S, Graham BP (2010) Encoding and retrieval in the hippocampal CA1 microcircuit model. Hippocampus 20(3):423–446PubMedGoogle Scholar
  12. Cutsuridis V, Hasselmo M (2012) GABAergic modulation of gating, timing and theta phase precession of hippocampal neuronal activity during theta oscillations. Hippocampus 22:1597–1621CrossRefGoogle Scholar
  13. Cutsuridis V, Hasselmo M (2010) Dynamics and function of a CA1 model of the hippocampus during theta and ripples. In: Diamantaras K, Duch W, Iliadis LS (eds) ICANN 2010, Part I, LNCS 6352. Springer, Berlin/Heidelberg, pp 230–240Google Scholar
  14. Cutsuridis V, Kahramanoglou I, Smyrnis N, Evdokimidis I, Perantonis S (2007) A Neural Variable Integrator Model of Decision Making in an Antisaccade Task. Neurocomputing 70(7–9):1390–1402CrossRefGoogle Scholar
  15. Dragoi G, Carpi D, Recce M, Csicsvari J, Buzsaki G (1999) Interactions between hippocampus and medial septum during sharp waves and theta oscillation in the behaving rat. J Neurosci 19(14):6191–6199CrossRefGoogle Scholar
  16. Ego-Stengel V, Wilson MA (2007) Spatial selectivity and theta phase precession in CA1 interneurons. Hippocampus 17(12):161–174CrossRefGoogle Scholar
  17. Freund TF (1989) GABAergic septohippocampal neurons contain parvalbumin. Brain Res 478:375–381CrossRefGoogle Scholar
  18. Freund TF, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336:170–173CrossRefGoogle Scholar
  19. Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470CrossRefGoogle Scholar
  20. Fuentealba P, Begum R, Capogna M, Jinno S, Márton LF, Csicsvari J, Thomson A, Somogyi P, Klausberger T (2008) Ivy cells: a population of nitric-oxide-producing, slow-spiking GABAergic neurons and their involvement in hippocampal network activity. Neuron 57(6):917–929CrossRefGoogle Scholar
  21. Fuentealba P, Klausberger T, Karayannis T, Suen WY, Huck J, Tomioka R, Rockland K, Capogna M, Studer M, Morales M, Somogyi P (2010) Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus. J Neurosci 30(5):1595–1609CrossRefGoogle Scholar
  22. Gasbarri A, Sulli A, Packard MG (1997) The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuropsychopharmacol. Biol Psychiatry 21:1–22Google Scholar
  23. Hafting T, Fynn M, Bonnevie T, Moser MB, Moser EI (2008) Hippocampus-independent phase precession in entorhinal grid cells. Nature 453(7199):1248–1252CrossRefGoogle Scholar
  24. Harris KD, Henze DA, Hirase H, Leinekugel Z, Dragoi G, Czurko A, Buzsaki G (2002) Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature 417:738–741CrossRefGoogle Scholar
  25. Ito HT, Schuman EM (2007) Frequency-dependent gating of synaptic transmission and plasticity by dopamine. Front Neural Circuits 1(1):1–13PubMedPubMedCentralGoogle Scholar
  26. Jinno S, Klausberger T, Marton LF, Dalezios Y, Roberts JD, Fuentealba P, Bushong EA, Henze D, Buzsáki G, Somogyi P (2007) Neuronal diversity in GABAergic long-range projections from the hippocampus. J Neurosci 27(33):8790–8804CrossRefGoogle Scholar
  27. Johnson A, Redish AD (2007) Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J Neurosci 27(45):12176–12189CrossRefGoogle Scholar
  28. Kamondi A, Acsady L, Wang XJ, Buzsaki G (1998) Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase precession of action potentials. Hippocampus 8:244–261CrossRefGoogle Scholar
  29. Klausberger T (2009) GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur J Neurosci 30(6):947–957CrossRefGoogle Scholar
  30. Klausberger T, Magill PJ, Marton LF, David J, Roberts B, Cobden PM, Buzsaki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848CrossRefGoogle Scholar
  31. Klausberger T, Marton LF, Baude A, Roberts JD, Magill PJ, Somogyi P (2004) Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci 7(1):41–47CrossRefGoogle Scholar
  32. Klausberger T, Marton LF, O’Neill J, Huck JH, Dalezios Y, Fuentealba P, Suen WY, Papp E, Kaneko T, Watanabe M, Csicsvari J, Somogyi P (2005) Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J Neurosci 25(42):9782–9793CrossRefGoogle Scholar
  33. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57CrossRefGoogle Scholar
  34. Kunec S, Hasselmo M, Kopell N (2005) Encoding and retrieval in the CA3 region of the hippocampus: a model of theta-phase separation. J Neurophysiol 94(1):70–82CrossRefGoogle Scholar
  35. Maurer AP, Cowen SL, Burke SN, Barnes CA, McNaughton BL (2006) Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells. J Neurosci 26(52):13,485–13,492CrossRefGoogle Scholar
  36. Maurer AP, McNaughton BL (2007) Network and intrinsic cellular mechanisms underlying theta phase precession of hippocampal neurons. TINS 30(7):325–333PubMedGoogle Scholar
  37. Mehta MR, Lee AK, Wilson MA (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417:741–746CrossRefGoogle Scholar
  38. Mizuseki K, Sirota A, Pastalkova E, Buzsaki G (2009) Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron 64:267–280CrossRefGoogle Scholar
  39. Molyneaux BJ, Hasselmo M (2002) GABAB presynaptic inhibition has an in vivo time constant sufficiently rapid to allow modulation at theta frequency. J Neurophys 87(3):1196–1205CrossRefGoogle Scholar
  40. O’Keefe J, Nadel L (1978) The Hippocampus as a Cognitive Map. Oxford University Press, LondonGoogle Scholar
  41. O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3(3):317–330CrossRefGoogle Scholar
  42. Otmakhova NA, Lisman JE (1999) Dopamine selectively inhibits the direct cortical pathway to the CA1 hippocampal region. J Neurosci 19:1437–1445CrossRefGoogle Scholar
  43. Rubin JE, Gerkin RC, Bi GQ, Chow CC (2005) Calcium time course as signal for spike-timing-dependent plasticity. J Neurophysiol 93:2600–2613CrossRefGoogle Scholar
  44. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172CrossRefGoogle Scholar
  45. Somogyi P, Katona L, Klausberger T, Lasztoczi B, Viney TJ (2014) Temporal redistribution of inhibition over neuronal subcellular domains underlies statedependent rhythmic change of excitability in the hippocampus. Philos Trans R Soc B 369:20120518CrossRefGoogle Scholar
  46. Somogyi P, Klausberger T (2005) Defined types of cortical interneurons structure space and spike timing in the hippocampus. J Physiol 562(1):9–26CrossRefGoogle Scholar
  47. Toth K, Borhegyi Z, Freund TF (1993) Postsynaptic targets of GABAergic hippocampal neurons in the medial septum-diagonal band of Broca complex. J Neurosci 13:3712–3724CrossRefGoogle Scholar
  48. Vertes RP, Kocsis B (1997) Brainstem–diencephalo–septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81:893–926CrossRefGoogle Scholar
  49. Vida I (2010) Morphology of hippocampal neurons. In: Cutsuridis V et al (eds) Hippocampal microcircuits: A computational modeler’s resource book. Springer, USA, pp 27–67CrossRefGoogle Scholar
  50. Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble code for space. Science 261(5124):1055–1058CrossRefGoogle Scholar
  51. Winson J (1978) Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 210:160–163CrossRefGoogle Scholar
  52. Zugaro MB, Monconduit L, Buzsaki G (2005) Spike phase precession persists after transient intrahippocampal perturbation. Nat Neurosci 8(1):67–71CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of LincolnLincolnUK

Personalised recommendations