Abstract
Synaptic electrophysiology has been extensively investigated in the rodent hippocampal formation for several decades. The strength, duration, and plasticity of excitatory and inhibitory signals depend both on the presynaptic and postsynaptic neuron types and vary substantially among subregions (dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex) and layers (e.g., oriens and radiatum). While certain connections are better characterized (e.g., the Schaffer collateral from CA3 pyramidal to CA1 pyramidal cells), the lack of a systematic accounting of published synaptic data prevents a comprehensive comparison across the whole circuit. Hippocampome.org, a knowledge base that identified over 100 neuron types based on morphological, electrophysiological, and molecular evidence, enables integration and dense coverage of the available synaptic data. Peters’ Rule predicts more than 3000 “potential connections” among neuron types. Extensive literature mining revealed electrophysiological properties for approximately 50% of these potential synapses at neuron-type level in peer-reviewed publications. In these cases, we extract information about synaptic amplitude, kinetics, and, when available, short-term and long-term plasticity. Due to widely nonuniform experimental methods and conditions, these data must be normalized and modeled to enable meaningful quantifications. The resulting type-based organized and integrated data will facilitate large-scale data-driven simulations of the entire hippocampal formation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ali AB, Thomson AM (1998) Facilitating pyramid to horizontal oriens-alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus. J Physiol 507(Pt 1):185–199
Amaral D, Witter M (1995) Hippocampal formation, Paxinos G., the rat nervous system, 2nd edn. Academic, San Diego
Andersen P (1959) Interhippocampal impulses. I. Origin, course and distribution in cat, rabbit and rat. Acta Physiol Scand 47:63–90. https://doi.org/10.1111/j.1748-1716.1960.tb01821.x
Andersen P (1960) Interhippocampal impulses. II. Apical dendritic activation of CAI neurons. Acta Physiol Scand 48:178–208. https://doi.org/10.1111/j.1748-1716.1960.tb01858.x
Andersen P (2007) The hippocampus book. In: Oxford. Oxford University Press, New York
Andersen P, Eccles JC, Loyning Y (1963) Recurrent inhibition in the hippocampus with identification of the inhibitory cell and its synapses. Nature 198:540–542
Andersen P, Sundberg SH, Sveen O, Wigstrom H (1977) Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature 266(5604):736–737
Anstotz M, Cosgrove KE, Hack I, Mugnaini E, Maccaferri G, Lubke JH (2014) Morphology, input-output relations and synaptic connectivity of Cajal-Retzius cells in layer 1 of the developing neocortex of CXCR4-EGFP mice. Brain Struct Funct 219(6):2119–2139. https://doi.org/10.1007/s00429-013-0627-2
Antonov SM, Johnson JW (1999) Permeant ion regulation of N-methyl-D-aspartate receptor channel block by Mg(2+). Proc Natl Acad Sci U S A 96(25):14571–14576
Ascoli GA (2006) Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nat Rev Neurosci 7(4):318–324. https://doi.org/10.1038/nrn1885
Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27(35):9247–9251. https://doi.org/10.1523/JNEUROSCI.2055-07.2007
Astori S, Pawlak V, Kohr G (2010) Spike-timing-dependent plasticity in hippocampal CA3 neurons. J Physiol 588(Pt 22):4475–4488. https://doi.org/10.1113/jphysiol.2010.198366
Baker JL, Perez-Rosello T, Migliore M, Barrionuevo G, Ascoli GA (2011) A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. J Comput Neurosci 31(1):137–158. https://doi.org/10.1007/s10827-010-0304-x
Beed P, Bendels MH, Wiegand HF, Leibold C, Johenning FW, Schmitz D (2010) Analysis of excitatory microcircuitry in the medial entorhinal cortex reveals cell-type-specific differences. Neuron 68(6):1059–1066. https://doi.org/10.1016/j.neuron.2010.12.009
Beed P, Gundlfinger A, Schneiderbauer S, Song J, Bohm C, Burgalossi A et al (2013) Inhibitory gradient along the dorsoventral axis in the medial entorhinal cortex. Neuron 79(6):1197–1207. https://doi.org/10.1016/j.neuron.2013.06.038
Bendels MH, Beed P, Leibold C, Schmitz D, Johenning FW (2008) A novel control software that improves the experimental workflow of scanning photostimulation experiments. J Neurosci Methods 175(1):44–57. https://doi.org/10.1016/j.jneumeth.2008.08.010
Bennett MR (1999) The early history of the synapse: from Plato to Sherrington. Brain Res Bull 50(2):95–118
Bezaire MJ, Soltesz I (2013) Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 23(9):751–785. https://doi.org/10.1002/hipo.22141
Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472
Bi GQ, Wang HX (2002) Temporal asymmetry in spike timing-dependent synaptic plasticity. Physiol Behav 77(4–5):551–555
Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356
Bota M, Swanson LW (2007) The neuron classification problem. Brain Res Rev 56(1):79–88. https://doi.org/10.1016/j.brainresrev.2007.05.005
Buhl EH, Halasy K, Somogyi P (1994) Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368(6474):823–828. https://doi.org/10.1038/368823a0
Burger M (2011) Inverse problems in ion channel modelling. Inverse Prob 27(8):083001
Campanac E, Gasselin C, Baude A, Rama S, Ankri N, Debanne D (2013) Enhanced intrinsic excitability in basket cells maintains excitatory-inhibitory balance in hippocampal circuits. Neuron 77(4):712–722. https://doi.org/10.1016/j.neuron.2012.12.020
Candès EJ, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9(6):717–772
Canto CB, Witter MP (2012a) Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex. Hippocampus 22(6):1256–1276. https://doi.org/10.1002/hipo.20997
Canto CB, Witter MP (2012b) Cellular properties of principal neurons in the rat entorhinal cortex. II. The medial entorhinal cortex. Hippocampus 22(6):1277–1299. https://doi.org/10.1002/hipo.20993
Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K et al (2010) Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat Protoc 5(2):247–254. https://doi.org/10.1038/nprot.2009.228
Chamberland S, Topolnik L (2012) Inhibitory control of hippocampal inhibitory neurons. Front Neurosci 6:165. https://doi.org/10.3389/fnins.2012.00165
Chang H, Ciani S, Kidokoro Y (1994) Ion permeation properties of the glutamate receptor channel in cultured embryonic Drosophila myotubes. J Physiol 476(1):1–16
Chapeau-Blondeau F, Chambet N (1995) Synapse models for neural networks: from ion channel kinetics to multiplicative coefficient wij. Neural Comput 7(4):713–734
Chen C, He B, Yuan X (2012) Matrix completion via an alternating direction method. IMA J Numer Anal 32(1):227–245
Chiu CQ, Lur G, Morse TM, Carnevale NT, Ellis-Davies GC, Higley MJ (2013) Compartmentalization of GABAergic inhibition by dendritic spines. Science 340(6133):759–762. https://doi.org/10.1126/science.1234274
Clarke RJ, Johnson JW (2008) Voltage-dependent gating of NR1/2B NMDA receptors. J Physiol 586(Pt 23):5727–5741. https://doi.org/10.1113/jphysiol.2008.160622
Coalson RD, Kurnikova MG (2005) Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Trans Nanobioscience 4(1):81–93
Cooper KE, Gates PY, Eisenberg RS (1988) Surmounting barriers in ionic channels. Q Rev Biophys 21(3):331–364
Cossart R, Petanjek Z, Dumitriu D, Hirsch JC, Ben-Ari Y, Esclapez M et al (2006) Interneurons targeting similar layers receive synaptic inputs with similar kinetics. Hippocampus 16(4):408–420. https://doi.org/10.1002/hipo.20169
Couey JJ, Witoelar A, Zhang SJ, Zheng K, Ye J, Dunn B et al (2013) Recurrent inhibitory circuitry as a mechanism for grid formation. Nat Neurosci 16(3):318–324. https://doi.org/10.1038/nn.3310
Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86(3):1033–1048. https://doi.org/10.1152/physrev.00030.2005
Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems (computational neuroscience). Massachusetts Institute of Technology Press, Cambridge, MA
De Schutter E (2000) Computational neuroscience: realistic modeling for experimentalists. Boca Raton, CRC Press
De Schutter E (2010) Computational modeling methods for neuroscientists (computational neuroscience). MIT Press, Cambridge, MA
Derrick BE, Martinez JL Jr (1996) Associative, bidirectional modifications at the hippocampal mossy fibre-CA3 synapse. Nature 381(6581):429–434. https://doi.org/10.1038/381429a0
Destexhe A, Mainen ZF, Sejnowski TJ (1994a) An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Comput 6(1):14–18
Destexhe A, Mainen ZF, Sejnowski TJ (1994b) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1(3):195–230
Destexhe A, Mainen ZF, Sejnowski TJ (1995) Fast kinetic models for simulating AMPA, NMDA, GABA A and GABA B receptors. In: The neurobiology of computation. Springer, Boston, MA, pp 9–14
Dhillon A, Jones RS (2000) Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro. Neuroscience 99(3):413–422
Dickson CT, Mena AR, Alonso A (1997) Electroresponsiveness of medial entorhinal cortex layer III neurons in vitro. Neuroscience 81(4):937–950
Dudek SM, Bear MF (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci 13(7):2910–2918
Dumitriu D, Cossart R, Huang J, Yuste R (2007) Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. Cereb Cortex 17(1):81–91. https://doi.org/10.1093/cercor/bhj126
Eisenberg RS (1999) From structure to function in open ionic channels. J Membr Biol 171(1):1–24
Eisenberg, B. (2010) Crowded charges in ion channels. arXiv preprint arXiv:1009.1786
Eisenberg B (2012) A leading role for mathematics in the study of ionic solutions. SIAM News 45(9):11–12
Elfant D, Pal BZ, Emptage N, Capogna M (2008) Specific inhibitory synapses shift the balance from feedforward to feedback inhibition of hippocampal CA1 pyramidal cells. Eur J Neurosci 27(1):104–113. https://doi.org/10.1111/j.1460-9568.2007.06001.x
Empson RM, Heinemann U (1995) The perforant path projection to hippocampal area CA1 in the rat hippocampal-entorhinal cortex combined slice. J Physiol 484(Pt 3):707–720
Evans SM, Janson AM, Nyengaard JR (2004) Quantitative methods in neuroscience: a neuroanatomical approach. Oxford University Press, New York
Feng J (2004) Computational neuroscience: comprehensive approach (Chapman & Hall/CRC mathematical biology and medicine series). Chapman & Hall/CRC, Boca Raton
Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6(4):347–470 doi:10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416(6879):433–438. https://doi.org/10.1038/416433a
Froemke RC, Tsay IA, Raad M, Long JD, Dan Y (2006) Contribution of individual spikes in burst-induced long-term synaptic modification. J Neurophysiol 95(3):1620–1629. https://doi.org/10.1152/jn.00910.2005
Fuhrmann G, Segev I, Markram H, Tsodyks M (2002) Coding of temporal information by activity-dependent synapses. J Neurophysiol 87(1):140–148
Geiger JR, Lubke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18(6):1009–1023
Gerhard F, Pipa G, Lima B, Neuenschwander S, Gerstner W (2011) Extraction of network topology from multi-electrode recordings: is there a small-world effect? Front Comput Neurosci 5:4. https://doi.org/10.3389/fncom.2011.00004
Germroth P, Schwerdtfeger WK, Buhl EH (1989) Morphology of identified entorhinal neurons projecting to the hippocampus. A light microscopical study combining retrograde tracing and intracellular injection. Neuroscience 30(3):683–691
Germroth P, Schwerdtfeger WK, Buhl EH (1991) Ultrastructure and aspects of functional organization of pyramidal and nonpyramidal entorhinal projection neurons contributing to the perforant path. J Comp Neurol 305(2):215–231. https://doi.org/10.1002/cne.903050205
Glickfeld LL, Scanziani M (2006) Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nat Neurosci 9(6):807–815. https://doi.org/10.1038/nn1688
Gloveli T, Schmitz D, Empson RM, Dugladze T, Heinemann U (1997) Morphological and electrophysiological characterization of layer III cells of the medial entorhinal cortex of the rat. Neuroscience 77(3):629–648
Gloveli T, Dugladze T, Saha S, Monyer H, Heinemann U, Traub RD et al (2005) Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. J Physiol 562(Pt 1):131–147. https://doi.org/10.1113/jphysiol.2004.073007
Glyzin S, Kolesov AY, Rozov NK (2013) On a method for mathematical modeling of chemical synapses. Differ Equ 49(10):1193–1210
Goldman DE (1943) Potential, impedance, and rectification in membranes. J Gen Physiol 27(1):37–60
Goswami SP, Bucurenciu I, Jonas P (2012) Miniature IPSCs in hippocampal granule cells are triggered by voltage-gated Ca2+ channels via microdomain coupling. J Neurosci 32(41):14294–14304. https://doi.org/10.1523/JNEUROSCI.6104-11.2012
Gutig R, Aharonov R, Rotter S, Sompolinsky H (2003) Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. J Neurosci 23(9):3697–3714
Hajos N, Mody I (1997) Synaptic communication among hippocampal interneurons: properties of spontaneous IPSCs in morphologically identified cells. J Neurosci 17(21):8427–8442
Han ZS, Buhl EH, Lorinczi Z, Somogyi P (1993) A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus. Eur J Neurosci 5(5):395–410
Hardie JB, Pearce RA (2006) Active and passive membrane properties and intrinsic kinetics shape synaptic inhibition in hippocampal CA1 pyramidal neurons. J Neurosci 26(33):8559–8569. https://doi.org/10.1523/JNEUROSCI.0547-06.2006
Harney SC, Jones MV (2002) Pre- and postsynaptic properties of somatic and dendritic inhibition in dentate gyrus. Neuropharmacology 43(4):584–594
Harris E, Stewart M (2001) Propagation of synchronous epileptiform events from subiculum backward into area CA1 of rat brain slices. Brain Res 895(1–2):41–49
Harsch A, Robinson HP (2000) Postsynaptic variability of firing in rat cortical neurons: the roles of input synchronization and synaptic NMDA receptor conductance. J Neurosci 20(16):6181–6192
Hefft S, Jonas P (2005) Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat Neurosci 8(10):1319–1328. https://doi.org/10.1038/nn1542
Hellwig B (2000) A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol Cybern 82(2):111–121
Hennig MH (2013) Theoretical models of synaptic short term plasticity. Front Comput Neurosci 7:45. https://doi.org/10.3389/fncom.2013.00045
Hestrin S, Sah P, Nicoll RA (1990) Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron 5(3):247–253
Hodgkin A i, Huxley A, Katz B (1949) Ionic currents underlying activity in the giant axon of the squid. Arch Sci Physiol 3(2):129–150
Houser CR (2007) Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. Prog Brain Res 163:217–232. https://doi.org/10.1016/S0079-6123(07)63013-1
Jaffe D, Johnston D (1990) Induction of long-term potentiation at hippocampal mossy-fiber synapses follows a Hebbian rule. J Neurophysiol 64(3):948–960
Jahr CE, Stevens CF (1987) Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325(6104):522–525. https://doi.org/10.1038/325522a0
Jahr CE, Stevens CF (1990) A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 10(6):1830–1837
Jiang X, Shen S, Cadwell CR, Berens P, Sinz F, Ecker AS et al (2015) Principles of connectivity among morphologically defined cell types in adult neocortex. Science 350(6264):aac9462. https://doi.org/10.1126/science.aac9462
Kandel ER, Spencer WA, Brinley FJ Jr (1961) Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J Neurophysiol 24:225–242
Karayannis T, Elfant D, Huerta-Ocampo I, Teki S, Scott RS, Rusakov DA et al (2010) Slow GABA transient and receptor desensitization shape synaptic responses evoked by hippocampal neurogliaform cells. J Neurosci 30(29):9898–9909. https://doi.org/10.1523/JNEUROSCI.5883-09.2010
Kaufman A, Dror G, Meilijson I, Ruppin E (2006) Gene expression of Caenorhabditis elegans neurons carries information on their synaptic connectivity. PLoS Comput Biol 2(12):e167–e167
Kelsch W, Li Z, Wieland S, Senkov O, Herb A, Gongrich C et al (2014) GluN2B-containing NMDA receptors promote glutamate synapse development in hippocampal interneurons. J Neurosci 34(48):16022–16030. https://doi.org/10.1523/JNEUROSCI.1210-14.2014
Kim NK, Robinson HP (2011) Effects of divalent cations on slow unblock of native NMDA receptors in mouse neocortical pyramidal neurons. Eur J Neurosci 34(2):199–212. https://doi.org/10.1111/j.1460-9568.2011.07768.x
Klausberger T (2009) GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur J Neurosci 30(6):947–957. https://doi.org/10.1111/j.1460-9568.2009.06913.x
Koch C (1999) Biophysics of computation: information processing in single neurons (computational neuroscience). Oxford University Press, New York
Kohara K, Pignatelli M, Rivest AJ, Jung HY, Kitamura T, Suh J et al (2014) Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat Neurosci 17(2):269–279. https://doi.org/10.1038/nn.3614
Korinek M, Sedlacek M, Cais O, Dittert I, Vyklicky L Jr (2010) Temperature dependence of N-methyl-D-aspartate receptor channels and N-methyl-D-aspartate receptor excitatory postsynaptic currents. Neuroscience 165(3):736–748. https://doi.org/10.1016/j.neuroscience.2009.10.058
Kumar SS, Buckmaster PS (2006) Hyperexcitability, interneurons, and loss of GABAergic synapses in entorhinal cortex in a model of temporal lobe epilepsy. J Neurosci 26(17):4613–4623. https://doi.org/10.1523/JNEUROSCI.0064-06.2006
Kuner T, Schoepfer R (1996) Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels. J Neurosci 16(11):3549–3558
Lacaille JC, Schwartzkroin PA (1988) Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. I. Intracellular response characteristics, synaptic responses, and morphology. J Neurosci 8(4):1400–1410
Lacaille JC, Mueller AL, Kunkel DD, Schwartzkroin PA (1987) Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology. J Neurosci 7(7):1979–1993
Lamsa KP, Heeroma JH, Somogyi P, Rusakov DA, Kullmann DM (2007) Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science 315(5816):1262–1266. https://doi.org/10.1126/science.1137450
Larimer P, Strowbridge BW (2010) Representing information in cell assemblies: persistent activity mediated by semilunar granule cells. Nat Neurosci 13(2):213–222. https://doi.org/10.1038/nn.2458
Le Duigou C, Kullmann DM (2011) Group I mGluR agonist-evoked long-term potentiation in hippocampal oriens interneurons. J Neurosci 31(15):5777–5781. https://doi.org/10.1523/JNEUROSCI.6265-10.2011
Le Duigou C, Savary E, Kullmann DM, Miles R (2015) Induction of anti-Hebbian LTP in CA1 stratum Oriens interneurons: interactions between group I metabotropic glutamate receptors and M1 muscarinic receptors. J Neurosci 35(40):13542–13554. https://doi.org/10.1523/JNEUROSCI.0956-15.2015
Le Roux N, Cabezas C, Bohm UL, Poncer JC (2013) Input-specific learning rules at excitatory synapses onto hippocampal parvalbumin-expressing interneurons. J Physiol 591(Pt 7):1809–1822. https://doi.org/10.1113/jphysiol.2012.245852
Ledri M, Sorensen AT, Erdelyi F, Szabo G, Kokaia M (2011) Tuning afferent synapses of hippocampal interneurons by neuropeptide Y. Hippocampus 21(2):198–211. https://doi.org/10.1002/hipo.20740
Lee SJ, Escobedo-Lozoya Y, Szatmari EM, Yasuda R (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458(7236):299–304. https://doi.org/10.1038/nature07842
Lei S, Pelkey KA, Topolnik L, Congar P, Lacaille JC, McBain CJ (2003) Depolarization-induced long-term depression at hippocampal mossy fiber-CA3 pyramidal neuron synapses. J Neurosci 23(30):9786–9795
Lewis CA (1979) Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J Physiol 286:417–445
Liu YC, Cheng JK, Lien CC (2014) Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns. J Neurosci 34(4):1344–1357. https://doi.org/10.1523/JNEUROSCI.2566-13.2014
Lovett-Barron M, Turi GF, Kaifosh P, Lee PH, Bolze F, Sun XH et al (2012) Regulation of neuronal input transformations by tunable dendritic inhibition. Nat Neurosci 15(3):423–430., S421-423. https://doi.org/10.1038/nn.3024
Maccaferri G, Toth K, McBain CJ (1998) Target-specific expression of presynaptic mossy fiber plasticity. Science 279(5355):1368–1370
Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215
Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci U S A 95(9):5323–5328
Markram H, Gerstner W, Sjostrom PJ (2012) Spike-timing-dependent plasticity: a comprehensive overview. Front Synaptic Neurosci 4:2. https://doi.org/10.3389/fnsyn.2012.00002
Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA et al (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163(2):456–492. https://doi.org/10.1016/j.cell.2015.09.029
Markwardt SJ, Dieni CV, Wadiche JI, Overstreet-Wadiche L (2011) Ivy/neurogliaform interneurons coordinate activity in the neurogenic niche. Nat Neurosci 14(11):1407–1409. https://doi.org/10.1038/nn.2935
Marti-Subirana A, Soriano E, Garcia-Verdugo JM (1986) Morphological aspects of the ectopic granule-like cellular populations in the albino rat hippocampal formation: a Golgi study. J Anat 144:31–47
Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309(5965):261–263
Mazumder R, Hastie T, Tibshirani R (2010) Spectral regularization algorithms for learning large incomplete matrices. J Mach Learn Res 11:2287–2322
McCloskey DP, Hintz TM, Pierce JP, Scharfman HE (2006) Stereological methods reveal the robust size and stability of ectopic hilar granule cells after pilocarpine-induced status epilepticus in the adult rat. Eur J Neurosci 24(8):2203–2210. https://doi.org/10.1111/j.1460-9568.2006.05101.x
Melzer S, Michael M, Caputi A, Eliava M, Fuchs EC, Whittington MA et al (2012) Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex. Science 335(6075):1506–1510. https://doi.org/10.1126/science.1217139
Miles R, Toth K, Gulyas AI, Hajos N, Freund TF (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16(4):815–823
Moradi K, Kaka G, Gharibzadeh S (2012) The role of passive normalization, voltage-gated channels and synaptic scaling in site-independence of somatic EPSP amplitude in CA1 pyramidal neurons. Neurosci Res 73(1):8–16
Moradi K, Moradi K, Ganjkhani M, Hajihasani M, Gharibzadeh S, Kaka G (2013) A fast model of voltage-dependent NMDA receptors. J Comput Neurosci 34(3):521–531. https://doi.org/10.1007/s10827-012-0434-4
Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19(6):1437–1467. https://doi.org/10.1162/neco.2007.19.6.1437
Morrison A, Diesmann M, Gerstner W (2008) Phenomenological models of synaptic plasticity based on spike timing. Biol Cybern 98(6):459–478. https://doi.org/10.1007/s00422-008-0233-1
Mullner FE, Wierenga CJ, Bonhoeffer T (2015) Precision of inhibition: dendritic inhibition by individual GABAergic synapses on hippocampal pyramidal cells is confined in space and time. Neuron 87(3):576–589. https://doi.org/10.1016/j.neuron.2015.07.003
Nicholson E, Kullmann DM (2014) Long-term potentiation in hippocampal oriens interneurons: postsynaptic induction, presynaptic expression and evaluation of candidate retrograde factors. Philos Trans R Soc Lond Ser B Biol Sci 369(1633):20130133. https://doi.org/10.1098/rstb.2013.0133
Nikolaev MV, Magazanik LG, Tikhonov DB (2012) Influence of external magnesium ions on the NMDA receptor channel block by different types of organic cations. Neuropharmacology 62(5–6):2078–2085. https://doi.org/10.1016/j.neuropharm.2011.12.029
Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465
Okazaki MM, Molnar P, Nadler JV (1999) Recurrent mossy fiber pathway in rat dentate gyrus: synaptic currents evoked in presence and absence of seizure-induced growth. J Neurophysiol 81(4):1645–1660
Oren I, Nissen W, Kullmann DM, Somogyi P, Lamsa KP (2009) Role of ionotropic glutamate receptors in long-term potentiation in rat hippocampal CA1 oriens-lacunosum moleculare interneurons. J Neurosci 29(4):939–950. https://doi.org/10.1523/JNEUROSCI.3251-08.2009
Otis TS, Mody I (1992) Modulation of decay kinetics and frequency of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents in hippocampal neurons. Neuroscience 49(1):13–32
Patneau DK, Mayer ML (1991) Kinetic analysis of interactions between kainate and AMPA: evidence for activation of a single receptor in mouse hippocampal neurons. Neuron 6(5):785–798
Patneau DK, Mayer ML, Jane DE, Watkins JC (1992) Activation and desensitization of AMPA/kainate receptors by novel derivatives of willardiine. J Neurosci 12(2):595–606
Pawelzik H, Hughes DI, Thomson AM (2002) Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. J Comp Neurol 443(4):346–367
Pawelzik H, Hughes DI, Thomson AM (2003) Modulation of inhibitory autapses and synapses on rat CA1 interneurones by GABA(A) receptor ligands. J Physiol 546(Pt 3):701–716
Perea G, Araque A (2007) Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317(5841):1083–1086. https://doi.org/10.1126/science.1144640
Perez Y, Morin F, Lacaille JC (2001) A hebbian form of long-term potentiation dependent on mGluR1a in hippocampal inhibitory interneurons. Proc Natl Acad Sci U S A 98(16):9401–9406. https://doi.org/10.1073/pnas.161493498
Pfister JP, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci 26(38):9673–9682. https://doi.org/10.1523/JNEUROSCI.1425-06.2006
Pierce JP, McCloskey DP, Scharfman HE (2011) Morphometry of hilar ectopic granule cells in the rat. J Comp Neurol 519(6):1196–1218. https://doi.org/10.1002/cne.22568
Price CJ, Cauli B, Kovacs ER, Kulik A, Lambolez B, Shigemoto R et al (2005) Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area. J Neurosci 25(29):6775–6786. https://doi.org/10.1523/JNEUROSCI.1135-05.2005
Qian A, Johnson JW (2006) Permeant ion effects on external Mg2+ block of NR1/2D NMDA receptors. J Neurosci 26(42):10899–10910. https://doi.org/10.1523/JNEUROSCI.3453-06.2006
Quattrocolo G, Maccaferri G (2013) Novel GABAergic circuits mediating excitation/inhibition of Cajal-Retzius cells in the developing hippocampus. J Neurosci 33(13):5486–5498. https://doi.org/10.1523/JNEUROSCI.5680-12.2013
Quattrocolo G, Maccaferri G (2014) Optogenetic activation of cajal-retzius cells reveals their glutamatergic output and a novel feedforward circuit in the developing mouse hippocampus. J Neurosci 34(39):13018–13032. https://doi.org/10.1523/JNEUROSCI.1407-14.2014
Raghavachari S, Lisman JE (2004) Properties of quantal transmission at CA1 synapses. J Neurophysiol 92(4):2456–2467. https://doi.org/10.1152/jn.00258.2004
Reimann MW, King JG, Muller EB, Ramaswamy S, Markram H (2015) An algorithm to predict the connectome of neural microcircuits. Front Comput Neurosci 9:120. https://doi.org/10.3389/fncom.2015.00120
Ross ST, Soltesz I (2001) Long-term plasticity in interneurons of the dentate gyrus. Proc Natl Acad Sci U S A 98(15):8874–8879. https://doi.org/10.1073/pnas.141042398
Rothman JS (2015) Modeling Synapses. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience. Springer New York, New York, NY, pp 1738–1750. https://doi.org/10.1007/978-1-4614-6675-8_240
Rothman JS, Silver RA (2014) Data-driven modeling of synaptic transmission and integration. Prog Mol Biol Transl Sci 123:305–350. https://doi.org/10.1016/B978-0-12-397897-4.00004-8
Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93(1):437–453. https://doi.org/10.1152/jn.00777.2004
Savanthrapadian S, Meyer T, Elgueta C, Booker SA, Vida I, Bartos M (2014) Synaptic properties of SOM- and CCK-expressing cells in dentate gyrus interneuron networks. J Neurosci 34(24):8197–8209. https://doi.org/10.1523/JNEUROSCI.5433-13.2014
Scharfman HE (1994) Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. J Neurophysiol 72(5):2167–2180
Scharfman HE, Pierce JP (2012) New insights into the role of hilar ectopic granule cells in the dentate gyrus based on quantitative anatomic analysis and three-dimensional reconstruction. Epilepsia 53(Suppl 1):109–115. https://doi.org/10.1111/j.1528-1167.2012.03480.x
Scharfman HE, Sollas AE, Berger RE, Goodman JH, Pierce JP (2003) Perforant path activation of ectopic granule cells that are born after pilocarpine-induced seizures. Neuroscience 121(4):1017–1029
Schneider CJ, Bezaire M, Soltesz I (2012) Toward a full-scale computational model of the rat dentate gyrus. Front Neural Circuits 6:83. https://doi.org/10.3389/fncir.2012.00083
Schurmans S, Schiffmann SN, Gurden H, Lemaire M, Lipp HP, Schwam V et al (1997) Impaired long-term potentiation induction in dentate gyrus of calretinin-deficient mice. Proc Natl Acad Sci U S A 94(19):10415–10420
Scimemi A (2014) Plasticity of GABA transporters: an unconventional route to shape inhibitory synaptic transmission. Front Cell Neurosci 8:128. https://doi.org/10.3389/fncel.2014.00128
Scorcioni R, Hamilton DJ, Ascoli GA (2008) Self-sustaining non-repetitive activity in a large scale neuronal-level model of the hippocampal circuit. Neural Netw 21(8):1153–1163. https://doi.org/10.1016/j.neunet.2008.05.006
Scorza CA, Araujo BH, Leite LA, Torres LB, Otalora LF, Oliveira MS et al (2011) Morphological and electrophysiological properties of pyramidal-like neurons in the stratum oriens of Cornu ammonis 1 and Cornu ammonis 2 area of Proechimys. Neuroscience 177:252–268. https://doi.org/10.1016/j.neuroscience.2010.12.054
Sik A, Penttonen M, Buzsaki G (1997) Interneurons in the hippocampal dentate gyrus: an in vivo intracellular study. Eur J Neurosci 9(3):573–588
Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32(6):1149–1164
Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol 562(Pt 1):9–26. https://doi.org/10.1113/jphysiol.2004.078915
Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3(9):919–926. https://doi.org/10.1038/78829
Song S, Sjostrom PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3(3):e68. https://doi.org/10.1371/journal.pbio.0030068
Spencer WA, Kandel ER (1961) Hippocampal neuron responses to selective activation of recurrent collaterals of hippocampofugal axons. Exp Neurol 4(2):149–161
Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2(2):145–162
Spruston N, Jonas P, Sakmann B (1995) Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J Physiol 482(Pt 2):325–352
Standage D, Jalil S, Trappenberg T (2007) Computational consequences of experimentally derived spike-time and weight dependent plasticity rules. Biol Cybern 96(6):615–623. https://doi.org/10.1007/s00422-007-0152-6
Sterratt D (2011) Principles of computational modelling in neuroscience. In: Cambridge. Cambridge University Press, New York
Steward O (1976) Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J Comp Neurol 167(3):285–314. https://doi.org/10.1002/cne.901670303
Steward O, Scoville SA (1976) Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 169(3):347–370. https://doi.org/10.1002/cne.901690306
Stiles JR, Bartol TM (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. Comput Neurosci Realistic Model Exp:87–127
Stiles JR, Van Helden D, Bartol TM Jr, Salpeter EE, Salpeter MM (1996) Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc Natl Acad Sci U S A 93(12):5747–5752
Szabadics J, Soltesz I (2009) Functional specificity of mossy fiber innervation of GABAergic cells in the hippocampus. J Neurosci 29(13):4239–4251. https://doi.org/10.1523/JNEUROSCI.5390-08.2009
Szabadics J, Varga C, Brunner J, Chen K, Soltesz I (2010) Granule cells in the CA3 area. J Neurosci 30(24):8296–8307. https://doi.org/10.1523/JNEUROSCI.5602-09.2010
Szabo A, Somogyi J, Cauli B, Lambolez B, Somogyi P, Lamsa KP (2012) Calcium-permeable AMPA receptors provide a common mechanism for LTP in glutamatergic synapses of distinct hippocampal interneuron types. J Neurosci 32(19):6511–6516. https://doi.org/10.1523/JNEUROSCI.0206-12.2012
Szabo GG, Papp OI, Mate Z, Szabo G, Hajos N (2014) Anatomically heterogeneous populations of CB1 cannabinoid receptor-expressing interneurons in the CA3 region of the hippocampus show homogeneous input-output characteristics. Hippocampus 24(12):1506–1523. https://doi.org/10.1002/hipo.22330
Tahvildari B, Alonso A (2005) Morphological and electrophysiological properties of lateral entorhinal cortex layers II and III principal neurons. J Comp Neurol 491(2):123–140. https://doi.org/10.1002/cne.20706
Toth K, McBain CJ (1998) Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nat Neurosci 1(7):572–578. https://doi.org/10.1038/2807
Trappenberg TP (2010) Fundamentals of computational neuroscience, 2nd edn. Oxford University Press, Oxford/New York
Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94(2):719–723
Tsodyks M, Uziel A, Markram H (2000) Synchrony generation in recurrent networks with frequency-dependent synapses. J Neurosci 20(1):RC50
Turrigiano G (2012) Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol 4(1):a005736. https://doi.org/10.1101/cshperspect.a005736
Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391(6670):892–896. https://doi.org/10.1038/36103
Urban NN, Barrionuevo G (1996) Induction of hebbian and non-hebbian mossy fiber long-term potentiation by distinct patterns of high-frequency stimulation. J Neurosci 16(13):4293–4299
van der Linden S, Lopes da Silva FH (1998) Comparison of the electrophysiology and morphology of layers III and II neurons of the rat medial entorhinal cortex in vitro. Eur J Neurosci 10(4):1479–1489
van Rossum MC, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20(23):8812–8821
Varadan V, Miller DM 3rd, Anastassiou D (2006) Computational inference of the molecular logic for synaptic connectivity in C. elegans. Bioinformatics 22(14):e497–e506. https://doi.org/10.1093/bioinformatics/btl224
Varela JA, Sen K, Gibson J, Fost J, Abbott LF, Nelson SB (1997) A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J Neurosci 17(20):7926–7940
Vida I, Halasy K, Szinyei C, Somogyi P, Buhl EH (1998) Unitary IPSPs evoked by interneurons at the stratum radiatum-stratum lacunosum-moleculare border in the CA1 area of the rat hippocampus in vitro. J Physiol 506(Pt 3):755–773
Vitureira N, Goda Y (2013) The interplay between Hebbian and homeostatic synaptic plasticity. J Cell Biol 203(2):175–186. https://doi.org/10.1083/jcb.201306030
Wallisch P (2014) MATLAB for neuroscientists: an introduction to scientific computing in MATLAB, 2nd edn. Academic, Amsterdam
Wang HX, Gerkin RC, Nauen DW, Bi GQ (2005) Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat Neurosci 8(2):187–193. https://doi.org/10.1038/nn1387
Wester JC, McBain CJ (2014) Behavioral state-dependent modulation of distinct interneuron subtypes and consequences for circuit function. Curr Opin Neurobiol 29:118–125. https://doi.org/10.1016/j.conb.2014.07.007
Wheeler DW, White CM, Rees CL, Komendantov AO, Hamilton DJ, Ascoli GA (2015) Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus. Elife 4. https://doi.org/10.7554/eLife.09960
Whittington MA, Traub RD, Jefferys JG (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373(6515):612–615. https://doi.org/10.1038/373612a0
Williams PA, Larimer P, Gao Y, Strowbridge BW (2007) Semilunar granule cells: glutamatergic neurons in the rat dentate gyrus with axon collaterals in the inner molecular layer. J Neurosci 27(50):13756–13761. https://doi.org/10.1523/JNEUROSCI.4053-07.2007
Woodin MA, Ganguly K, Poo MM (2003) Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl- transporter activity. Neuron 39(5):807–820
Yang K, Dani JA (2014) Dopamine D1 and D5 receptors modulate spike timing-dependent plasticity at medial perforant path to dentate granule cell synapses. J Neurosci 34(48):15888–15897. https://doi.org/10.1523/JNEUROSCI.2400-14.2014
Yang YC, Lee CH, Kuo CC (2010) Ionic flow enhances low-affinity binding: a revised mechanistic view into Mg2+ block of NMDA receptors. J Physiol 588(Pt 4):633–650. https://doi.org/10.1113/jphysiol.2009.178913
Zhu Y, Auerbach A (2001a) K(+) occupancy of the N-methyl-d-aspartate receptor channel probed by Mg(2+) block. J Gen Physiol 117(3):287–298
Zhu Y, Auerbach A (2001b) Na(+) occupancy and Mg(2+) block of the n-methyl-d-aspartate receptor channel. J Gen Physiol 117(3):275–286
Acknowledgments
This project is supported by grants R01NS39600 (NIH), MURI N00014–10–1-0198 (ONR), NAKFI (Keck), CENTEC (AFOSR), Robust Intelligence (NSF), and Northrop Grumman.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Moradi, K., Ascoli, G.A. (2018). Systematic Data Mining of Hippocampal Synaptic Properties. In: Cutsuridis, V., Graham, B., Cobb, S., Vida, I. (eds) Hippocampal Microcircuits. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-99103-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-99103-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99102-3
Online ISBN: 978-3-319-99103-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)

