Abley K, De Reuille PB, Strutt D, Bangham A, Prusinkiewicz P, Marée AF, Grieneisen VA, Coen E (2013) An intracellular partitioning-based framework for tissue cell polarity in plants and animals. Development 140(10):2061–2074
CAS
CrossRef
Google Scholar
Armour WJ, Barton DA, Law AM, Overall RL (2015) Differential growth in periclinal and anticlinal walls during lobe formation in arabidopsis cotyledon pavement cells. Plant Cell 27(9):2484–2500
CAS
CrossRef
Google Scholar
Bassel GW, Stamm P, Mosca G, de Reuille PB, Gibbs DJ, Winter R, Janka A, Holdsworth MJ, Smith RS (2014) Mechanical constraints imposed by 3d cellular geometry and arrangement modulate growth patterns in the arabidopsis embryo. Proc Natl Acad Sci 111(23):8685–8690
CAS
CrossRef
Google Scholar
Besson S, Dumais J (2011) Universal rule for the symmetric division of plant cells. Proc Natl Acad Sci 108(15):6294–6299
CAS
CrossRef
Google Scholar
Bilsborough GD, Runions A, Barkoulas M, Jenkins HW, Hasson A, Galinha C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M (2011) Model for the regulation of arabidopsis thaliana leaf margin development. Proc Natl Acad Sci 108(8):3424–3429
CAS
CrossRef
Google Scholar
Boudon F, Pradal C, Cokelaer T, Prusinkiewicz P, Godin C (2012) L-py: an l-system simulation framework for modeling plant architecture development based on a dynamic language. Front. Plant Sci. 3:76
CrossRef
Google Scholar
Boudon F, Chopard J, Ali O, Gilles B, Hamant O, Boudaoud A, Traas J, Godin C (2015) A computational framework for 3d mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput Biol 11(1):e1003950
CrossRef
Google Scholar
Campilho A, Garcia B, Wijk HV, Campilho A, Scheres B et al (2006) Time-lapse analysis of stem-cell divisions in the arabidopsis thaliana root meristem. Plant J 48(4):619–627
CAS
CrossRef
Google Scholar
Cieslak M, Runions A, Prusinkiewicz P (2015) Auxin-driven patterning with unidirectional fluxes. J Exp Bot 66:5083–5102. https://doi.org/10.1093/jxb/erv262
CAS
CrossRef
Google Scholar
Coen E, Rebocho AB (2016) Resolving conflicts: modeling genetic control of plant morphogenesis. Dev Cell 38(6):579–583
CAS
CrossRef
Google Scholar
Coen E, Rolland-Lagan AG, Matthews M, Bangham JA, Prusinkiewicz P (2004) The genetics of geometry. Proc Natl Acad Sci USA 101(14):4728–4735
CAS
CrossRef
Google Scholar
de Boer MJ, Fracchia FD, Prusinkiewicz P (1992) A model for cellular development in morphogenetic fields. In: Lindenmayer systems. Springer, Berlin, pp 351–370
CrossRef
Google Scholar
de Reuille PB, Routier-Kierzkowska AL, Kierzkowski D, Bassel GW, Schüpbach T, Tauriello G, Bajpai N, Strauss S, Weber A, Kiss A et al (2015) Morphographx: a platform for quantifying morphogenesis in 4d. Elife 4:e05864
CrossRef
Google Scholar
De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novák O, Yamaguchi N, Yoshida S, Van Isterdael G, Palovaara J et al (2014) Integration of growth and patterning during vascular tissue formation in arabidopsis. Science 345(6197):1255215
CrossRef
Google Scholar
Donnelly P, Bonetta D, Tsukaya H, Dengler R, Dengler N (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215(2):407–419
CAS
CrossRef
Google Scholar
Dupuy L, Mackenzie J, Haseloff J (2010) Coordination of plant cell division and expansion in a simple morphogenetic system. Proc Natl Acad Sci 107(6):2711–2716
CAS
CrossRef
Google Scholar
el Showk S, Blomster T, Siligato R, Marée AF, Mähönen AP, Grieneisen VA et al (2015) Parsimonious model of vascular patterning links transverse hormone fluxes to lateral root initiation: auxin leads the way, while cytokinin levels out. PLoS Comput Biol 11(10):e1004450
CrossRef
Google Scholar
Errera L (1888) Über zellfromen und seifenblasen. Botanisches Centralblatt 34:395–398
Google Scholar
Federl P, Prusinkiewicz P (1999) Virtual laboratory: an interactive software environment for computer graphics. In: Computer graphics international, vol 242, pp 93–100
Google Scholar
Fernandez R, Das P, Mirabet V, Moscardi E, Traas J, Verdeil JL, Malandain G, Godin C (2010) Imaging plant growth in 4d: robust tissue reconstruction and lineaging at cell resolution. Nat Methods 7(7):547–553
CAS
CrossRef
Google Scholar
Feugier FG, Mochizuki A, Iwasa Y. (2005) Self-organization of the vascular system in plant leaves: inter-dependent dynamics of auxin flux and carrier proteins. J Theor Biol 236(4):366–375
CAS
CrossRef
Google Scholar
Fukushima K, Fujita H, Yamaguchi T, Kawaguchi M, Tsukaya H, Hasebe M (2015) Oriented cell division shapes carnivorous pitcher leaves of sarracenia purpurea. Nat Commun 6:6450
CAS
CrossRef
Google Scholar
Galassi M, Davies J, Theiler J, Gough B, Jungman G, Alken P, Booth M, Rossi F (2002) Gnu Scientific Library. Network Theory Ltd 3
Google Scholar
Giavitto JL, Michel O (2001) MGS: a ruled-based language for complex objects and collections. Electron Notes Theor Comput Sci 59(4):1–19
CrossRef
Google Scholar
Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12(1):30–39
CAS
CrossRef
Google Scholar
Glazier JA, Graner F (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47(3):2128
CAS
CrossRef
Google Scholar
Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic growth models. In: Mathematical modelling of biosystems. Springer, Berlin, pp 1–44
Google Scholar
Grieneisen VA, Xu J, Marée AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449(7165):1008–1013. https://doi.org/10.1038/nature06215. http://dx.doi.org/10.1038/nature06215
CAS
CrossRef
Google Scholar
Haselkorn R (1998) How cyanobacteria count to 10. Science 282(5390):891–892
CAS
CrossRef
Google Scholar
Heisler MG, Jönsson H (2006) Modeling auxin transport and plant development. J Plant Growth Regul 25:302–312. https://doi.org/10.1007/s00344-006-0066-x
CAS
CrossRef
Google Scholar
Hejnowicz Z, Karczewski J (1993) Modeling of meristematic growth of root apices in a natural coordinate system. Am J Bot 80:309–315
CrossRef
Google Scholar
Hejnowicz Z, Nakielski J, Hejnowicz K (1984) Modeling of spatial variations of growth within apical domes by means of the growth tensor. ii. Growth specified on dome surface. Acta Soc Bot Pol 53:301–316.
CrossRef
Google Scholar
Hervieux N, Dumond M, Sapala A, Routier-Kierzkowska AL, Kierzkowski D, Roeder AH, Smith RS, Boudaoud A, Hamant O (2016) A mechanical feedback restricts sepal growth and shape in arabidopsis. Curr Biol 26(8):1019–1028
CAS
CrossRef
Google Scholar
Hofmeister W (1868) Handbuch der physiologishen botanik. Engelmann, Leipzig
Google Scholar
Honda H (1978) Description of cellular patterns by Dirichlet domains: the two-dimensional case. J Theor Biol 72:523–543
CAS
CrossRef
Google Scholar
Honda H (1983) Geometrical models for cells in tissues. Int Rev Cytol 81:191–248
CAS
CrossRef
Google Scholar
Jönsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci U S A 103(5):1633–1638. https://doi.org/10.1073/pnas.0509839103. http://dx.doi.org/10.1073/pnas.0509839103
CrossRef
Google Scholar
Jönsson H, Gruel J, Krupinski P, Troein C (2012) On evaluating models in computational morphodynamics. Curr Opin Plant Biol 15(1):103–110
CrossRef
Google Scholar
Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9(10):770–780
CAS
CrossRef
Google Scholar
Kennaway R, Coen E, Green A, Bangham A (2011) Generation of diverse biological forms through combinatorial interactions between tissue polarity and growth. PLoS Comput Biol 7(6):e1002071
CAS
CrossRef
Google Scholar
Kierzkowski D, Nakayama N, Routier-Kierzkowska AL, Weber A, Bayer E, Schorderet M, Reinhardt D, Kuhlemeier C, Smith RS (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335(6072):1096–1099
CAS
CrossRef
Google Scholar
Kramer EM (2008) Computer models of auxin transport: a review and commentary. J Exp Bot 59(1):45–53
CAS
CrossRef
Google Scholar
Kramer EM (2009) Auxin-regulated cell polarity: an inside job? Trends Plant Sci 14(5):242–247
CAS
CrossRef
Google Scholar
Kuchen EE, Fox S, de Reuille PB, Kennaway R, Bensmihen S, Avondo J, Calder GM, Southam P, Robinson S, Bangham A et al (2012) Generation of leaf shape through early patterns of growth and tissue polarity. Science 335(6072):1092–1096
CAS
CrossRef
Google Scholar
Kuhlemeier C (2007) Phyllotaxis. Trends Plant Sci 12(4):143–150
CAS
CrossRef
Google Scholar
Kwiatkowska D (2006) Flower primordium formation at the arabidopsis shoot apex: quantitative analysis of surface geometry and growth. J Exp Bot 57(3):571–580
CAS
CrossRef
Google Scholar
Lindenmayer A (1968) Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. J Theor Biol 18(3):280–299
CAS
CrossRef
Google Scholar
Lindenmayer A (1968) Mathematical models for cellular interactions in development. II. Simple and branching filaments with two-sided inputs. J Theor Biol 18(3):300–315
CAS
PubMed
Google Scholar
Lintilhac PM, Vesecky TB (1984) Stress-induced alignment of division plane in plant tissues grown in vitro. Nature 307(5949):363–364
CrossRef
Google Scholar
Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8(2):264–275
CAS
CrossRef
Google Scholar
Louveaux M, Julien JD, Mirabet V, Boudaoud A, Hamant O (2016) Cell division plane orientation based on tensile stress in arabidopsis thaliana. Proc Natl Acad Sci 113(30):E4294–303. https://doi.org/10.1073/pnas.1600677113
CAS
CrossRef
Google Scholar
Meinhardt H (1982) Models of biological pattern formation. Academic Press, London
Google Scholar
Meinhardt H (2003) Complex pattern formation by a self-destabilization of established patterns: chemotactic orientation and phyllotaxis as examples. C R Biol 326(2):223–237
CrossRef
Google Scholar
Merks RM, Guravage M, Inzé D, Beemster GT (2011) Virtualleaf: an open-source framework for cell-based modeling of plant tissue growth and development. Plant Physiol 155(2):656–666
CAS
CrossRef
Google Scholar
Mitchison GJ (1980) A model for vein formation in higher plants. Philos Trans R Soc Lond B Biol Sci 207:79–109
CrossRef
Google Scholar
Nakielski J (2000) Pattern formation in biology, vision and dynamics, chap. Tensorial model for growth and cell division in the shoot apex. World Scientific, pp. 252–286
Google Scholar
Nakielski J, Barlow P (1995) Principal directions of growth and the generation of cell patterns in wild-type and gib-1 mutant roots of tomato (lycopersicon esculentum mill.) grown in vitro. Planta 196(1):30–39
CAS
CrossRef
Google Scholar
Nakielski J, Lipowczan M (2013) Spatial and directional variation of growth rates in arabidopsis root apex: A modelling study. PLOS ONE 8(12). https://doi.org/10.1371/journal.pone.0084337. https://doi.org/10.1371/journal.pone.0084337
Neubert MG, Caswell H, Murray J (2002) Transient dynamics and pattern formation: reactivity is necessary for turing instabilities. Math Biosci 175(1):1–11
CrossRef
Google Scholar
Prusinkiewicz P, Lane B (2012) Pattern formation in morphogenesis. Springer, Berlin
Google Scholar
Prusinkiewicz P, Lane B (2013) Modeling morphogenesis in multicellular structures with cell complexes and l-systems. In: Pattern formation in morphogenesis. Springer, Berlin, pp 137–151
CrossRef
Google Scholar
Prusinkiewicz P, Lindenmayer A (1990) Algorithmic beauty of plants. Springer, Berlin
CrossRef
Google Scholar
Rebocho AB, Southam P, Kennaway JR, Bangham JA, Coen E (2017) Generation of shape complexity through tissue conflict resolution. eLife 6:e20156
CrossRef
Google Scholar
Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426(6964):255–260. https://doi.org/10.1038/nature02081. http://dx.doi.org/10.1038/nature02081
CAS
CrossRef
Google Scholar
Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4):455–467
CAS
CrossRef
Google Scholar
Rolland-Lagan AG, Prusinkiewicz P (2005) Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis. Plant J 44(5):854–865. https://doi.org/10.1111/j.1365-313X.2005.02581.x
CAS
CrossRef
Google Scholar
Rolland-Lagan AG, Remmler L, Girard-Bock C (2014) Quantifying shape changes and tissue deformation in leaf development. Plant Physiol 165(2):496–505
CAS
CrossRef
Google Scholar
Runions A (2008) Modeling biological patterns using the space colonization algorithm. M.Sc. Thesis, University of Calgary
Google Scholar
Runions A, Fuhrer M, Lane B, Federl P, Rolland-Lagan AG, Prusinkiewicz P (2005) Modeling and visualization of leaf venation patterns. ACM Trans Graph 24:702–711
CrossRef
Google Scholar
Sachs T (1981) The control of patterned differentiation of vascular tissues. Adv Bot Res 9:151–262
CrossRef
Google Scholar
Sahlin P, Söderberg B, Jönsson H (2009) Regulated transport as a mechanism for pattern generation: capabilities for phyllotaxis and beyond. J Theor Biol 258(1):60–70
CAS
CrossRef
Google Scholar
Sauret-Güeto S, Schiessl K, Bangham A, Sablowski R, Coen E (2013) Jagged controls arabidopsis petal growth and shape by interacting with a divergent polarity field. PLoS Biol 11(4):e1001550
CrossRef
Google Scholar
Scarpella E, Francis P, Berleth T (2004) Stage-specific markers define early steps of procambium development in Arabidopsis leaves and correlate termination of vein formation with mesophyll differentiation. Development 131(14):3445–3455
CAS
CrossRef
Google Scholar
Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20(8):1015–1027. https://doi.org/10.1101/gad.1402406
CAS
CrossRef
Google Scholar
Smith R (2011) Modeling plant morphogenesis and growth. New Trends Phys Mech Biol Syst 92:301–336
CrossRef
Google Scholar
Smith RS, Bayer EM (2009) Auxin transport-feedback models of patterning in plants. Plant Cell Environ 32(9): 1258–1271. https://doi.org/10.1111/j.1365-3040.2009.01997.x. http://dx.doi.org/10.1111/j.1365-3040.2009.01997.x
CAS
CrossRef
Google Scholar
Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci U S A 103(5):1301–1306. https://doi.org/10.1073/pnas.0510457103
CAS
CrossRef
Google Scholar
Smith RS, Kuhlemeier C, Prusinkiewicz P (2006) Inhibition fields for phyllot actic pattern formation: a simulation study. Can J Bot 84(11):1635–1649
CrossRef
Google Scholar
Turing A (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237:37–52
CrossRef
Google Scholar
Wabnik K, Robert HS, Smith RS, Friml J (2013) Modeling framework for the establishment of the apical-basal embryonic axis in plants. Curr Biol 23(24):2513–2518
CAS
CrossRef
Google Scholar
Yoshida S, de Reuille PB, Lane B, Bassel GW, Prusinkiewicz P, Smith RS, Weijers D (2014) Genetic control of plant development by overriding a geometric division rule. Dev cell 29(1):75–87
CAS
CrossRef
Google Scholar
Žádníková P, Wabnik K, Abuzeineh A, Gallemi M, Van Der Straeten D, Smith RS, Inzé D, Friml J, Prusinkiewicz P, Benková E (2016) A model of differential growth-guided apical hook formation in plants. Plant Cell 28(10):2464–2477
CrossRef
Google Scholar
Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Butterworth-Heinemann, Boston
Google Scholar