Single-Cell Approaches for Understanding Morphogenesis Using Computational Morphodynamics

  • Pau Formosa-Jordan
  • José Teles
  • Henrik JönssonEmail author


In multicellular organisms cells grow, divide and adopt different fates, resulting in tissues and organs with specific functions. In recent years, a number of studies have brought quantitative knowledge about how these processes are orchestrated, shedding new light on cells as active and central players in morphogenesis. We explore recent advances in understanding plant morphogenesis from a quantitative perspective, defining the research field of Computational Morphodynamics. The focus is on studies combining theoretical and experimental approaches integrating hypotheses of how molecular and mechanical regulation at the cellular level lead to tissue behaviour. Finally, we discuss some of the main challenges for future work.



We apologise to all authors whose valuable contributions are not mentioned in this review due to space limitation. The work in the authors’ group was supported by the Gatsby Charitable Foundation (GAT3395/PR4). P. F.-J. and J. T. acknowledge postdoctoral fellowships provided by the Herchel Smith Foundation.


  1. 1.
    Gilbert SF, Singer SR (2006) Developmental biology, 8th edn. Sinauer Associates, Inc, SunderlandGoogle Scholar
  2. 2.
    Martins BM, Das AK, Antunes L, Locke JCW (2016) Frequency doubling in the cyanobacterial circadian clock. Mol Syst Biol 12:896. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cooper S, Bakal C (2017) Accelerating live single-cell Signalling studies. Trends Biotechnol 35:422. CrossRefPubMedGoogle Scholar
  4. 4.
    Handly LN, Yao J, Wollman R (2016) Signal transduction at the single-cell level: approaches to study the dynamic nature of signaling networks. J Mol Biol 428:3669–3682. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Martins BM, Locke JC (2015) Microbial individuality: how single-cell heterogeneity enables population level strategies. Curr Opin Microbiol 24:104–112. CrossRefPubMedGoogle Scholar
  6. 6.
    Okumoto S, Jones A, Frommer WB (2012) Quantitative imaging with fluorescent biosensors. Annu Rev Plant Biol 63:663–706. CrossRefPubMedGoogle Scholar
  7. 7.
    Locke JC, Elowitz M (2009) Using movies to analyse gene circuit dynamics in single cells. Nat Rev Microbiol 7:383–392CrossRefGoogle Scholar
  8. 8.
    Schmoller K, Turner JJ, Kõivomägi M, Skotheim JM (2015) Dilution of the cell cycle inhibitor Whi5 controls budding yeast cell size. Nature 526:268. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sampathkumar A, Yan A, Krupinski P, Meyerowitz EM (2014) Physical forces regulate plant development and morphogenesis. Curr Biol 24:R475–R483. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sparks E, Wachsman G, Benfey PN (2013) Spatiotemporal signalling in plant development. Nat Rev Genet 14:631–644. CrossRefPubMedGoogle Scholar
  11. 11.
    Heidstra R, Sabatini S (2014) Plant and animal stem cells: similar yet different. Nat Rev Mol Cell Biol 15:301–312. CrossRefPubMedGoogle Scholar
  12. 12.
    Roeder A, Tarr P, Tobin C, Zhang X (2011) Computational morphodynamics of plants: integrating development over space and time. Nat Rev Mol Cell Biol 12:265CrossRefGoogle Scholar
  13. 13.
    Chickarmane V, Roeder AH, Tarr PT et al (2010) Computational Morphodynamics: a modeling framework to understand plant growth. Annu Rev Plant Biol 61:65–87CrossRefGoogle Scholar
  14. 14.
    Jönsson H, Gruel J, Krupinski P, Troein C (2012) On evaluating models in computational Morphodynamics. Curr Opin Plant Biol 15:103–110. CrossRefPubMedGoogle Scholar
  15. 15.
    Mao Y, Green JBA (2017) Systems morphodynamics: understanding the development of tissue hardware. Philos Trans R Soc B 372:20160505. CrossRefGoogle Scholar
  16. 16.
    Sahlin P, Jönsson H (2010) A modeling study on how cell division affects properties of epithelial tissues under isotropic growth. PLoS One 5:e11750. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Alim K, Hamant O, Boudaoud A (2012) Regulatory role of cell division rules on tissue growth heterogeneity. Front Plant Sci 3:174. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Laufs P, Grandjean O, Jonak C et al (1998) Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell 10:1375–1390. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM (2004) Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131:4225–4237. CrossRefPubMedGoogle Scholar
  20. 20.
    Willis L, Refahi Y, Wightman R et al (2016) Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche. Proc Natl Acad Sci U S A 113:E8238–E8246. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Serrano-Mislata A, Schiessl K, Sablowski R (2015) Active control of cell size generates spatial detail during plant organogenesis. Curr Biol 25:2991–2996. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jones R, Forero-vargas M, Withers SP et al (2017) Cell-size dependent progression of the cell cycle creates both homeostasis and flexibility of plant cell size. Nat Commun 8:15060. CrossRefGoogle Scholar
  23. 23.
    Besson S, Dumais J (2011) Universal rule for the symmetric division of plant cells. Proc Natl Acad Sci U S A 108:6294–6299. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Louveaux M, Julien J-D, Mirabet V et al (2016) Cell division plane orientation based on tensile stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A 113:E4294–E4303. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shapiro BE, Tobin C, Mjolsness E, Meyerowitz EM (2015) Analysis of cell division patterns in the Arabidopsis shoot apical meristem. Proc Natl Acad Sci U S A 112:4815–4820. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jun S, Taheri-Araghi S (2015) Cell-size maintenance: universal strategy revealed. Trends Microbiol 23:4–6. CrossRefPubMedGoogle Scholar
  27. 27.
    North AJ (2006) Seeing is believing? A beginners’ guide to practical pitfalls in image acquisition. J Cell Biol 172:9–18. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    von Wangenheim D, Hauschild R, Fendrych M et al (2017) Live tracking of moving samples in confocal microscopy for vertically grown roots. elife 6:e26792. CrossRefGoogle Scholar
  29. 29.
    Sanati Nezhad A (2014) Microfluidic platforms for plant cells studies. Lab Chip 14:3262–3274. CrossRefPubMedGoogle Scholar
  30. 30.
    Grossmann G, Guo W-J, Ehrhardt DW et al (2011) The RootChip: an integrated microfluidic chip for plant science. Plant Cell 23:4234–4240. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rizza A, Walia A, Lanquar V et al (2017) In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat Plants 3:803–813. CrossRefPubMedGoogle Scholar
  32. 32.
    Massalha H, Korenblum E, Malitsky S et al (2017) Live imaging of root–bacteria interactions in a microfluidics setup. Proc Natl Acad Sci United States Am 114:4549–4554. CrossRefGoogle Scholar
  33. 33.
    Barbez E, Laňková M, Pařezová M et al (2013) Single-cell-based system to monitor carrier driven cellular auxin homeostasis. BMC Plant Biol 13:20. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572. CrossRefPubMedGoogle Scholar
  35. 35.
    Zaban B, Liu W, Jiang X et al (2015) Plant cells use Auxin efflux to explore geometry. Sci Rep 4:5852. CrossRefGoogle Scholar
  36. 36.
    Van Der Honing HS, De Ruijter NCA, Emons AMC, Ketelaar T (2010) Actin and myosin regulate cytoplasm stiffness in plant cells: a study using optical tweezers. New Phytol 185:90–102. CrossRefPubMedGoogle Scholar
  37. 37.
    Bassel GW, Stamm P, Mosca G et al (2014) Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo. Proc Natl Acad Sci U S A 111:8685–8690. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yoshida S, BarbierdeReuille P, Lane B et al (2014) Genetic control of plant development by overriding a geometric division rule. Dev Cell 29:75–87. CrossRefPubMedGoogle Scholar
  39. 39.
    Bassel GW, Smith RS (2016) Quantifying morphogenesis in plants in 4D. Curr Opin Plant Biol 29:87–94. CrossRefPubMedGoogle Scholar
  40. 40.
    Morris EC, Griffiths M, Golebiowska A et al (2017) Shaping 3D root system architecture. Curr Biol 27:R919–R930. CrossRefPubMedGoogle Scholar
  41. 41.
    Lee KJI, Calder GM, Hindle CR et al (2017) Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity. J Exp Bot 68:527–538. CrossRefPubMedGoogle Scholar
  42. 42.
    McNally JG, Karpova T, Cooper J, Conchello JA (1999) Three-dimensional imaging by deconvolution microscopy. Methods 19:373–385. CrossRefPubMedGoogle Scholar
  43. 43.
    Shaw PJ, Rawlins DJ (1991) The point spread function of a confocal microscopy: its measurement and use in deconvolution of 3-D data. J Microsc 163:151–165. CrossRefGoogle Scholar
  44. 44.
    Meyer HM, Teles J, Formosa-Jordan P et al (2017) Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal. Elife 6:e19131. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Fernandez R, Das P, Mirabet V et al (2010) Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat Methods 7:547. CrossRefPubMedGoogle Scholar
  46. 46.
    Band LR, Wells DM, Fozard JA et al (2014) Systems analysis of Auxin transport in the Arabidopsis root apex. Plant Cell 26:862–875. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jackson MDB, Xu H, Duran-Nebreda S et al (2017) Topological analysis of multicellular complexity in the plant hypocotyl. Elife 6:e26023. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Soille P (2004) Morphological image analysis: principles and applications, 2nd edn. Springer Science & Business Media, Berlin. CrossRefGoogle Scholar
  49. 49.
    Barbier de Reuille P, Routier-Kierzkowska A-L, Kierzkowski D et al (2015) MorphoGraphX: a platform for quantifying morphogenesis in 4D. elife 4:e05864. CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Jönsson H (2005) Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics 21:i232–i240CrossRefGoogle Scholar
  51. 51.
    Jönsson H, Heisler MG, Shapiro BE et al (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci U S A 103:1633–1638CrossRefGoogle Scholar
  52. 52.
    Maška M, Ulman V, Svoboda D et al (2014) A benchmark for comparison of cell tracking algorithms. Bioinformatics 30:1609–1617. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Haubold C, Schiegg M, Kreshuk A et al (2016) Segmenting and tracking multiple dividing targets using ilastik. In: Focus bio-image informatics. Springer, Basel, pp 199–229CrossRefGoogle Scholar
  54. 54.
    Carpenter AE, Jones TR, Lamprecht MR et al (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cordelières FP, Petit V, Kumasaka M et al (2013) Automated cell tracking and analysis in phase-contrast videos (iTrack4U): development of Java software based on combined mean-shift processes. PLoS One 8:e81266. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tinevez J-Y, Perry N, Schindelin J et al (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90. CrossRefPubMedGoogle Scholar
  57. 57.
    Michelin G, Refahi Y, Wightman R et al (2016) Spatio-temporal registration of 3D microscopy image sequences of arabidopsis floral meristems. In: 2016 IEEE 13th international symposium. Biomedical imaging. IEEE, Amsterdam, pp 1127–1130CrossRefGoogle Scholar
  58. 58.
    Commowick O, Grégoire V, Malandain G (2008) Atlas-based delineation of lymph node levels in head and neck computed tomography images. Radiother Oncol 87:281–289. CrossRefPubMedGoogle Scholar
  59. 59.
    Ourselin S, Roche A, Prima S, Ayache N (2000) Block matching: a general framework to improve robustness of rigid registration of medical images. Springer, Heidelberg, pp 557–566Google Scholar
  60. 60.
    Fricker MD, Moger J, Littlejohn GR, Deeks MJ (2016) Making microscopy count: quantitative light microscopy of dynamic processes in living plants. J Microsc 263:181–191. CrossRefPubMedGoogle Scholar
  61. 61.
    Montenegro-Johnson TD, Stamm P, Strauss S et al (2015) Digital single-cell analysis of plant organ development using 3DCellAtlas. Plant Cell 27:1018–1033. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Sommer C, Gerlich DW (2013) Machine learning in cell biology – teaching computers to recognize phenotypes. J Cell Sci 126:5529–5539. CrossRefPubMedGoogle Scholar
  63. 63.
    Kan A (2017) Machine learning applications in cell image analysis. Immunol Cell Biol 95(6):1–6. CrossRefGoogle Scholar
  64. 64.
    Van Valen DA, Kudo T, Lane KM et al (2016) Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput Biol 12:e1005177. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Held M, A Schmitz MH, Fischer B et al (2010) CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat Methods 7:747–754. CrossRefPubMedGoogle Scholar
  66. 66.
    Yin Z, Sadok A, Sailem H et al (2013) A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes. Nat Cell Biol 15:860–871. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Teles J, Pina C, Edé NP et al (2013) Transcriptional regulation of lineage commitment - a stochastic model of cell fate decisions. PLoS Comput Biol 9:e1003197. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Schröter C, Rué P, Mackenzie JP, Martinez Arias A (2015) FGF/MAPK signaling sets the switching threshold of a mutual repressor circuit controlling cell fate decisions in ES cells. Development 142:4205–4216. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Protonotarios ED, Baum B, Johnston A et al (2014) An absolute interval scale of order for point patterns. J R Soc Interface 11:20140342. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Greese B, Hülskamp M, Fleck C et al (2014) Quantification of variability in trichome patterns. Front Plant Sci 5:596. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Azpeitia E, Benitez M, Vega I, Villarreal C (2010) Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche. BMC Syst Biol 4:134CrossRefGoogle Scholar
  72. 72.
    Digiuni S, Schellmann S, Geier F et al (2008) A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves. Mol Syst Biol 4:217. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Jaeger KE, Pullen N, Lamzin S et al (2013) Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 25:820–833. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Vilarrasa-Blasi J, González-García MP, Frigola D et al (2014) Regulation of plant stem cell quiescence by a brassinosteroid signaling module. Dev Cell 30:36–47. CrossRefPubMedGoogle Scholar
  75. 75.
    Yadav RK, Perales M, Gruel J et al (2013) Plant stem cell maintenance involves direct transcriptional repression of differentiation program. Mol Syst Biol 9:654. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Meyer HM, Roeder AHK (2014) Stochasticity in plant cellular growth and patterning. Front Plant Sci 5:420. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Álvarez-Buylla ER, Chaos Á, Aldana M et al (2008) Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS One 3:e3626. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361. CrossRefGoogle Scholar
  79. 79.
    El Samad H, Khammash M, Petzold L, Gillespie D (2005) Stochastic modelling of gene regulatory networks. Int J Robust Nonlinear Control 15:691–711. CrossRefGoogle Scholar
  80. 80.
    Gillespie DT (2000) The chemical Langevin equation. J Chem Phys 297:297–306. CrossRefGoogle Scholar
  81. 81.
    Adalsteinsson D, McMillen D, Elston TC (2004) Biochemical network stochastic simulator (BioNetS): software for stochastic modeling of biochemical networks. BMC Bioinformatics 5:24. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Weber M, Buceta J (2013) Stochastic stabilization of phenotypic states: the genetic bistable switch as a case study. PLoS One 8:e73487. CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Robinson S, Barbier De Reuille P, Chan J et al (2011) Generation of spatial patterns through cell polarity switching. Science 333:1436CrossRefGoogle Scholar
  84. 84.
    Boudon F, Chopard J, Ali O et al (2015) A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput Biol 11:e1003950. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hamant O, Heisler MG, Jönsson H et al (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655CrossRefGoogle Scholar
  86. 86.
    Uyttewaal M, Burian A, Alim K et al (2012) Mechanical stress acts via Katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149:439–451. CrossRefPubMedGoogle Scholar
  87. 87.
    Bhatia N, Bozorg B, Larsson A et al (2016) Auxin acts through MONOPTEROS to regulate plant cell polarity and pattern Phyllotaxis. Curr Biol 26:1–7. CrossRefGoogle Scholar
  88. 88.
    Stoma S, Lucas M, Chopard J et al (2008) Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development. PLoS Comput Biol 4:e1000207. CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Morales-Tapia A, Cruz-Ramírez A (2016) Computational modeling of Auxin: a Foundation for Plant Engineering. Front Plant Sci 7:1881. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Abley K, De Reuille PB, Strutt D et al (2013) An intracellular partitioning-based framework for tissue cell polarity in plants and animals. Development 140:2061–2074. CrossRefPubMedGoogle Scholar
  91. 91.
    Runions A, Smith RS, Prusinkiewicz P (2014) Computational models of auxin-driven development. In: Auxin its role plant development. Springer, Vienna, pp 315–357CrossRefGoogle Scholar
  92. 92.
    van Berkel K, de Boer RJ, Scheres B, ten Tusscher K (2013) Polar auxin transport: models and mechanisms. Development 140:2253–2268. CrossRefPubMedGoogle Scholar
  93. 93.
    Fàbregas N, Formosa-Jordan P, Confraria A et al (2015) Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana. PLoS Genet 11:e1005183. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Yadav SR, Yan D, Sevilem I, Helariutta Y (2014) Plasmodesmata-mediated intercellular signaling during plant growth and development. Development 5:1–7. CrossRefGoogle Scholar
  95. 95.
    Gruel J, Landrein B, Tarr P et al (2016) An epidermis-driven mechanism positions and scales stem cell niches in plants. Sci Adv 2:e1500989. CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Liepe J, Kirk P, Filippi S et al (2014) A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation. Nat Protoc 9:439. CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Pullen N, Morris RJ (2014) Bayesian model comparison and parameter inference in systems biology using nested sampling. PLoS One 9(2):e88419. CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Opatrný Z, Nick P, Petrášek J (2014) Plant cell strains in fundamental research and applications. In: Nick P, Opatrny Z (eds) Applied plant cell biology. Springer, Heidelberg, pp 455–481CrossRefGoogle Scholar
  99. 99.
    Koseska A, Bastiaens PI (2017) Cell signaling as a cognitive process. EMBO J 36:568–582. CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Palau-Ortin D, Formosa-Jordan P, Sancho JM, Ibañes M (2015) Pattern selection by dynamical biochemical signals. Biophys J 108:1555–1565. CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Verd B, Crombach A, Jaeger J (2014) Classification of transient behaviours in a time-dependent toggle switch model. BMC Syst Biol 8:43. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Pau Formosa-Jordan
    • 1
  • José Teles
    • 1
  • Henrik Jönsson
    • 1
    • 2
    • 3
    Email author
  1. 1.Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
  2. 2.Computational Biology and Biological PhysicsLund UniversityLundSweden
  3. 3.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations